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Abstract
Objective. Automated organ segmentation onCT images can enable the clinical use of advanced
quantitative software devices, butmodel performance sensitivitiesmust be understood before
widespread adoption can occur. The goal of this studywas to investigate performance differences
betweenConvolutionalNeural Networks (CNNs) trained to segment one (single-class) versus
multiple (multi-class) organs, and betweenCNNs trained on scans from a singlemanufacturer versus
multiplemanufacturers.Methods. Themulti-class CNNwas trained onCT images obtained from455
whole-body PET/CT scans (413 for training, 42 for testing) takenwith Siemens, GE, and Phillips
PET/CT scanners where 16 organswere segmented. Themulti-class CNNwas compared to 16 smaller
single-class CNNs trained using the same data, but with segmentations of only one organ permodel.
In addition, CNNs trained on Siemens-only (N= 186) andGE-only (N= 219) scans (manufacturer-
specific)were comparedwithCNNs trained on data fromboth Siemens andGE scanners
(manufacturer-mixed). Segmentation performancewas quantified using five performancemetrics,
including theDice Similarity Coefficient (DSC).Results. Themulti-class CNNperformedwell
compared to previous studies, even in organs usually considered difficult auto-segmentation targets
(e.g., pancreas, bowel). Segmentations from themulti-class CNNwere significantly superior to those
from smaller single-class CNNs inmost organs, and the 16 single-classmodels took, on average, six
times longer to segment all 16 organs compared to the singlemulti-classmodel. Themanufacturer-
mixed approach achievedminimally higher performance over themanufacturer-specific approach.
Significance. ACNN trained on contours ofmultiple organs andCTdata frommultiplemanufacturers
yielded high-quality segmentations. Such amodel is an essential enabler of image processing in a
software device that quantifies and analyzes such data to determine a patient’s treatment response. To
date, this activity of whole organ segmentation has not been adopted due to the intensemanual
workload and time required.

1. Introduction

Segmentation of organs on Computed Tomography
(CT), Positron Emission Tomography (PET), or
Magnetic Resonance Imaging (MRI) scans has proven
useful for many medical image analysis tasks. Exam-
ples include diagnosis (Diaconis and Rao 1980, Mah-
mood et al 2019), treatment response monitoring
(Padhani and Koh 2011), radiotherapy treatment
planning (Thorwarth 2015, Stieb et al 2019), and
treatment-related toxicity detection (Frelau et al 2021,

Hribernik et al 2022). However, when performed
manually, organ segmentation is so time-consuming
that it is not feasible to integrate into a clinical setting
(Vaassen et al 2020, van der Veen et al 2020) and
subject to substantial inter-observer variations (Han-
sen et al 2018, Lorenzen et al 2021). Convolutional
Neural Networks (CNNs) have demonstrated the
ability to perform automated segmentation of multi-
ple anatomical sites (Liu et al 2018, 2020, Kavur et al
2021), and have been shown to reduce both time spent
on segmentation and inter-observer variability
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(Gooding et al 2018, Vaassen et al 2020, van der Veen
et al 2020, Trimpl et al 2022).

Implementing CNN-based segmentation in a clin-
ical setting requires careful consideration of several
practical issues. Commercially available scanners vary
both in terms of imaging hardware and reconstruction
software. Options for segmentation algorithm archi-
tecture also differ widely, each having their own spe-
cific advantages and drawbacks (Moeskops et al 2016,
Minaee et al 2022). Finally, the variety and complexity
of the organs to be segmented vary depending on the
clinical use case. These factors may hamper the imple-
mentation of CNN-based segmentation workflows.
For clinical use, it is crucial that automated medical
image processing steps, such as segmentation byCNN,
be trained and evaluated in large, heterogeneous data-
sets representing a realistic variety of imaging hard-
ware they are likely to encounter in the clinic.

Although CNN-based segmentation is becoming
more widely adopted in some radiotherapy workflows
(Schreier et al 2020, Cha et al 2021, Chang et al 2021), it
is not widely used in settings aiming to assess response
to therapy in patients with advanced cancers. In addi-
tion, a number of uncertainties and unknowns remain
to be sufficiently addressed. Among these are possible
scanner- or manufacturer-specific effects (e.g., noise
patterns) as well as the question ofmodel performance
when data from multiple institutions are used (Roth
et al 2020, Ng et al 2021). Additionally, for the segmen-
tation of multiple organs, it is unknown whether fea-
tures learned for the segmentation of one organ are
optimal for the segmentation of others, and thus whe-
ther optimal performance is achieved by training one
multi-class model, or by training multiple single-class
models (Amjad et al 2022).

Our aims in this study were: (1) to assess the per-
formance of CNN-based multi-class segmentation
model in a large, diverse data set containing CT scans
from multiple PET/CT scanner manufacturers, and
(2) to evaluate the sensitivity of segmentation perfor-
mance to the training setting (multi- versus single-
class training) and to the scanner manufacturer used
for training and testing.

2.Methods

2.1.Data set
The imaging data used in this study consisted of 455
retrospectively collected whole-body CT scans either
from public sources or obtained by AIQ Solutions as
part of research collaborations with academic medical
centers. These cohorts were selected for their range of
patient sex and disease burden, which can impact the
presentation of certain organs.

Scans were acquired on either Siemens Healthi-
neers (186 scans, 11 scanner models), GEMedical Sys-
tems scanners (219 scans, 8 scanner models), or
Phillips Medical Systems machines (26 scans, 5

scannermodels) between 2005 and 2021. For 24 scans,
scanner information was unavailable. As scans were
acquired retrospectively, scans were reconstructed
according to each sites clinical workflow and thus
encompassed a variety of reconstruction settings.
Details of the patient demographics and scanner infor-
mation is outlined in table 1.

In each scan, sixteen structures were manually con-
toured by either an experienced nuclear medicine physi-
cian with 15 years’ experience (author SC) or a
radiographerwith over 10 years’ experience: liver, spleen,
lungs, thyroid, kidneys, pancreas, bladder, aorta, adrenal
glands, bowel, stomach, heart, eyes, salivary glands (con-
sisting of parotid and submandibular glands), pituitary
gland, and choroid plexus. Note that while not all struc-
tures are organs, the term ‘organ’ is used in this work for
brevity. Image contouring and review was completed
using 3DSlicer (Kikinis et al2014).

2.2. CNNmodel architecture and training
For the multi-class segmentationmodel, 393 CT scans
were used for training (86%), 20 scans were used for
monitoring training progress (4%), and 42 scans were
held out as an external test set (10%).

A deep learningmodel with a fully 3DU-net archi-
tecture was trained for organ segmentation, outlined
as follows. As in (Çiçek et al 2016), the U-net archi-
tecture involves an ‘analysis’ path and a ‘synthesis’
path, with skip connections that allows the network to
learn features at multiple resolutions. A single input
channel was used for the CT image, which was resam-
pled to a grid size of 2.0× 2.0× 2.0 mm and normal-
ized such that CT values within the patient had amean
of 0 and standard deviation of 1.

Patches of size 128× 128× 128 voxels were extrac-
ted from the training images using class balancing to
ensure an equal number of patches were sampled from
each target organ. In total, 34 patches per patient (2 per
class, including background)were extracted before train-
ing, resulting in 15,470 total patches. Data augmentation
including random Gaussian noise, random rotations,
random flips, and random elastic transformations, were
randomly chosen and applied to 70%of the training pat-
ches on the fly. The loss was the average of the cross
entropy and dice similarity coefficient (DSC), which was
optimized using stochastic gradient descent with a learn-
ing rate of 0.01 decreased by a factor of 2 every 20 epochs
for a total of 150 epochs. One epoch was defined as the
process of all 15,470 patches undergoing one forward
pass through themodel exactly once.

For the testing dataset, inference was performed on
processed images (cubic voxel size and normalized CT)
using overlapping patches with a step size of 64 voxels
(half of the patch size). Voxels at the center of each patch
were weighted with higher confidence using a 3D Gaus-
sian function. After patch inference, the U-net prob-
ability maps were resampled back to the natural CT
resolution using linear interpolation. Final segmentation
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mapswere then generated by taking themaximumprob-
ability in each segmentation class.

A step involving the largest connected component
analysis was taken to remove extraneous segmenta-
tions. For the liver, spleen, pancreas, aorta, bladder,
bowel, stomach, and heart, the single largest con-
nected component was taken. For the lungs, thyroid,
and kidneys, the largest two connected components
were taken. This step was applied to the outputs of all
trainedmodels.

Models were trained using an NVIDIA 3090 RTX
GPUwith 24GBofVRAM.

2.3. Sub-study I: Single- versusmulti-classmodel
To investigate the impact of single- versus multi-class
training on segmentation performance, sixteen organ-
specific models were trained for each organ using the
same training data set as the mutli-class model, but
with contours of only one organ as targets. All training
parameters (train/validation/test split, optimizer,
loss, learning rate) were kept identical to the multi-
class model. However, single class models were made
smaller by reducing the number of feature maps by a
factor of 4. This was done to reduce the inference time
of the single-class models, as maintaining the same
large model size for 16 individual single-class models
would result in an inference time rougly 16 times that
of the multi-class model. The total inference time for

each patient was extracted and compared between the
multi-class and single-classmodels.

2.4. Sub-study II:Manufacturer-specific versus
manufacturer-mixedmodels
To determine the effect of scanner manufacturer on
CNN segmentation performance, four models were
trained. Two manufacturer-specific models were
trained: a GE-only model trained on 186 CT scans
from GE scanners, and a Siemens-only model trained
on 186 CT scans from Siemens scanners. Each model
was tested on all scans available from the other
manufacturer. Twomanufacturer-mixedmodels were
trained with the same data as used for the manufac-
turer-specific models using an approach similar to
2-fold cross validation: each model was trained with
186 CT scans split evenly between GE and Siemens
scanners, and evaluated on the remaining scans. Due
to the small number of CT scans acquired on Phillips
scanners, these data were excluded from this substudy.
In addition, the 24 scans for which scanner informa-
tion was not available were excluded from this
substudy.

2.5.Metrics for segmentation evaluation
Model performance was quantified using a combina-
tion of overlap, surface distance, and voxel-wise
metrics:

Table 1.Patient and scan information for all patients, the patients scanned on Siemens scanners, and for patients scanned onGE scanners.
For cases where datawas lost during scan transfer or anonymization, ‘Unknown’ is listed.

Siemens (n= 186) GE (n= 219) Philips (n= 26)

Patient sex, n 81 / 99 / 6 82 / 130 / 7 14 / 12 / 0
Female /Male /Unknown

Patient age, years 64 [22, 91] 65 [33, 88] 60.5 [33, 86]
Median [range]
Patient weight, kg 76.7 [42.2, 125.2] 79.0 [36.0, 141.0] 77.4 [47.4, 121.0]
Median [range]

BiographModels 1023, 1024 (n= 45) Discovery STE (n= 71)
BiographHiResModel 1080 (n= 40) Discovery ST (n= 60)

Biograph 16 (n= 39) Discovery LS (n= 29) GEMINI TFTOF 16 (n= 9)
Scannermodel BiographTrueVModels 1093, 1094 (n= 22) Discovery 710 (n= 27) GEMINI TFBig Bore (n= 8)

Biograph64_mCT4 R (n= 14) DiscoveryMI (n= 19) Guardian Body (n= 4)
Biograph64 (n= 14) DiscoveryMIDR (n= 6) Allegro Body (n= 3)
Biograph128 (n= 5) Discovery RX (n= 5) Vereos PET/CT (n= 2)
Biograph 6 (n= 4) Discovery 690 (n= 2)

EmotionDuoModel 1062 (n= 3)
5.0 (n= 121) 3.75 (n= 87)

Slice thickness,mm 4.0 (n= 57) 5.00 (n= 78) 5.0 (n= 14)
3.0 (n= 8) 3.27 (n= 47) 4.0 (n= 12)

2.50 (n= 7)
B30f (n= 47)
B31s (n= 33)
B30s (n= 31) STANDARD (n= 111)

ConvolutionKernel B31f (n= 25) SOFT (n= 62) B (n= 24)
B40s (n= 23) Unknown (n= 46) Unknown (n= 2)
Br38f (n= 14)
B19f (n= 10)
B40f (n= 2)
B41f (n= 1)
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Table 2. Segmentation performance of themulti-organmodel and single-organmodels.Multi-organ versus single-organmodel
performancewas assessedwithWilcoxon paired tests. P values were Bonferroni corrected for the number of target organs (16) and the
number of performancemetrics (5). Significantly better performance are bolded. DSC:Dice Similarity Coefficient, ASSD: Average
Symmetric SurfaceDistance,HSD95, 95th percentileHausdorff distance, PPV: Positive Predictive Value.

Organ DSC ASSD [mm] HSD95 [mm] PPV Sensitivity

Liver

Multi 0.961 [0.956, 0.966] 1.07 [0.98, 1.36] 3.63 [3.27, 4.31] 0.959 [0.954, 0.969] 0.963 [0.953, 0.973]
Single 0.952 [0.947, 0.956] 1.37 [1.25, 1.79] 4.24 [3.81, 5.83] 0.953 [0.942, 0.963] 0.953 [0.942, 0.965]
p-value <0.001 <0.001 <0.001 <0.001 0.21

Spleen

Multi 0.944 [0.931, 0.951] 0.85 [0.72, 1.05] 3.09 [2.5, 3.87] 0.944 [0.927, 0.959] 0.944 [0.933, 0.957]
Single 0.93 [0.896, 0.941] 0.98 [0.85, 1.62] 3.34 [2.93, 4.98] 0.939 [0.914, 0.957] 0.93 [0.91, 0.946]
p-value <0.001 <0.001 0.037 0.003 1.0

Lung

Multi 0.969 [0.961, 0.975] 0.82 [0.63, 1.17] 2.85 [2.01, 3.37] 0.967 [0.959, 0.975] 0.974 [0.965, 0.979]
Single 0.968 [0.955, 0.974] 0.89 [0.62, 1.33] 2.83 [2.18, 4] 0.969 [0.958, 0.975] 0.969 [0.954, 0.976]
p-value <0.001 0.002 0.18 <0.001 1.0

Thyroid

Multi 0.748 [0.705, 0.812] 1.31 [1.07, 1.81] 4.69 [3.27, 5.93] 0.805 [0.744, 0.854] 0.715 [0.64, 0.814]
Single 0.675 [0.603, 0.725] 1.66 [1.43, 2.24] 4.89 [4.12, 7.84] 0.827 [0.738, 0.87] 0.604 [0.528, 0.657]
p-value <0.001 <0.001 0.014 <0.001 1.0

Kidney

Multi 0.924 [0.912, 0.937] 0.88 [0.77, 1.12] 3.07 [2.52, 4] 0.92 [0.899, 0.94] 0.935 [0.905, 0.951]
Single 0.904 [0.865, 0.924] 1.1 [0.9, 1.77] 3.4 [2.76, 5.84] 0.914 [0.882, 0.938] 0.919 [0.863, 0.933]
p-value <0.001 <0.001 0.001 <0.001 1.0

Pancreas

Multi 0.788 [0.721, 0.84] 1.93 [1.52, 3.03] 6.3 [4.62, 12.48] 0.84 [0.749, 0.89] 0.78 [0.738, 0.845]
Single 0.67 [0.584, 0.741] 3.48 [2.78, 6.37] 13.1 [7.9, 27.68] 0.777 [0.634, 0.88] 0.603 [0.512, 0.709]
p-value <0.001 <0.001 0.013 <0.001 0.5

Bladder

Multi 0.871 [0.791, 0.923] 1.36 [1.07, 2.04] 4.25 [3.27, 6.51] 0.892 [0.752, 0.946] 0.901 [0.787, 0.942]
Single 0.794 [0.697, 0.878] 2.19 [1.72, 2.79] 7.09 [4.66, 9.03] 0.839 [0.67, 0.916] 0.822 [0.69, 0.894]
p-value <0.001 <0.001 0.017 0.004 0.034

Aorta

Multi 0.919 [0.91, 0.928] 1.06 [0.94, 1.13] 3.29 [2.81, 4.19] 0.915 [0.896, 0.93] 0.926 [0.906, 0.941]
Single 0.889 [0.873, 0.907] 1.44 [1.24, 1.63] 4.27 [3.91, 5] 0.909 [0.868, 0.924] 0.878 [0.862, 0.905]
p-value <0.001 <0.001 0.015 <0.001 0.75

Adrenals

Multi 0.67 [0.609, 0.725] 1.36 [1.08, 2.33] 5.02 [3.52, 8.6] 0.748 [0.676, 0.814] 0.619 [0.555, 0.685]
Single 0.551 [0.446, 0.614] 2.2 [1.71, 3.5] 7.7 [5.89, 12.84] 0.788 [0.7, 0.828] 0.418 [0.326, 0.501]
p-value <0.001 <0.001 0.001 <0.001 1.0

Bowel

Multi 0.903 [0.88, 0.922] 1.47 [1.16, 2.02] 4.51 [3.53, 6.96] 0.907 [0.865, 0.93] 0.922 [0.888, 0.934]
Single 0.851 [0.807, 0.874] 2.44 [1.96, 3.31] 9.22 [6.94, 13.49] 0.88 [0.832, 0.903] 0.864 [0.789, 0.889]
p-value <0.001 <0.001 <0.001 <0.001 <0.001

Stomach

Multi 0.902 [0.873, 0.928] 1.71 [1.17, 2.26] 4.8 [3.87, 9.56] 0.924 [0.886, 0.944] 0.91 [0.842, 0.937]
Single 0.824 [0.739, 0.877] 2.88 [2.01, 5.52] 11.69 [5.74, 23.06] 0.905 [0.837, 0.942] 0.804 [0.621, 0.858]
p-value <0.001 <0.001 <0.001 <0.001 1.0

Heart

Multi 0.941 [0.927, 0.948] 1.46 [1.23, 1.99] 4.86 [3.52, 6.38] 0.944 [0.929, 0.961] 0.94 [0.922, 0.956]
Single 0.925 [0.904, 0.937] 1.88 [1.47, 2.51] 5.84 [4.25, 7.74] 0.938 [0.906, 0.957] 0.927 [0.896, 0.95]
p-value <0.001 <0.001 <0.001 0.01 0.67

Eyes

Multi 0.854 [0.835, 0.878] 1.08 [0.87, 1.31] 3.27 [2.71, 3.92] 0.882 [0.828, 0.911] 0.848 [0.829, 0.865]
Single 0.84 [0.817, 0.855] 1.23 [0.97, 1.43] 3.27 [2.86, 4.01] 0.872 [0.837, 0.91] 0.815 [0.783, 0.837]
p-value 0.001 0.57 0.23 0.001 1.0
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TheDice Similarity Coefficient (DSC)
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where SA and SB are the surfaces of the evaluated and
reference segmentations, respectively, and d is the
minimum distance between a voxel s and a set of
boundary voxels S’:
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The 95% Hausdorff distance (HSD95), which is the
95th percentile P95 of the set of surface distances
between the evaluated and reference segmentations:
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The voxel-wise sensitivity:
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The voxel-wise positive predictive value (PPV):

=
+
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.

Table 2. (Continued.)

Organ DSC ASSD [mm] HSD95 [mm] PPV Sensitivity

Salivary

Multi 0.818 [0.79, 0.847] 1.48 [1.37, 1.68] 4.13 [3.82, 5.15] 0.833 [0.782, 0.874] 0.823 [0.781, 0.848]
Single 0.759 [0.722, 0.783] 2.28 [1.95, 2.55] 6.11 [5.09, 7.03] 0.77 [0.686, 0.821] 0.757 [0.714, 0.795]
p-value <0.001 <0.001 <0.001 <0.001 <0.001

Pituitary

Multi 0.459 [0.362, 0.596] 1.66 [1.18, 2.18] 4.17 [3.27, 4.89] 0.57 [0.461, 0.775] 0.424 [0.34, 0.628]
Single 0.229 [0.116, 0.352] 2.68 [1.66, 3.43] 4.84 [3.77, 6.93] 1 [0.804, 1] 0.132 [0.062, 0.219]
p-value <0.001 <0.001 <0.001 <0.001 <0.001

Choroid Plexus

Multi 0.537 [0.445, 0.637] 2.05 [1.63, 2.75] 5.49 [4.43, 9.57] 0.608 [0.515, 0.676] 0.522 [0.383, 0.645]
Single 0.336 [0.276, 0.444] 3.33 [2.49, 4.25] 8.45 [7.6, 12.18] 0.418 [0.336, 0.6] 0.284 [0.208, 0.39]
p-value <0.001 0.32 1.0 <0.001 0.43

Figure 1.Example organ segmentations produced by themulti-organCNNon a randomly selected patient from the test set. TheCNN
produced all colored organ renderings. A 150HU isocontour was produced and is shown for visualization purposes in grey.
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2.6. Statistical analysis
The multi-class segmentation model was assessed for
bias in the test dataset by calculating Spearman correla-
tion of DSC with patient age and weight. A Wilcoxon
rank sum test was used to assess differences between
patient sex. Differences in segmentation performance
by single-class versus multi-class training setting were

assessed using paired Wilcoxon Signed-Rank tests.
Differences in segmentation performance across the
manufacturer-specific and manufacturer-mixed mod-
els were assessed with paired Wilcoxon rank sum test.
P-values were corrected for multiple hypotheses using
the Bonferroni method. Following correction, p-values
below0.05were considered statistically significant.

Figure 2.Examples of cases with poor performance comparing themanual ground truth contours (left)with themulti-classU-net
contours (right). (A)The casewith the lowest liverDSCperformance due to imperfections of themanual contours. (B)Acase with
poor kidney performance due to a large cyst on the left kidney. (C)Poor bowel performance is found in this example casewhichmay
be due to the abnormal presence of omental/peritoneal fat and the collection of abnormal peritoneal fluids. (D)Acase with poor lung
segmentation due to lung disease. (E) Severe CT artifacts result in theU-net not contouring the bladder, while themanual contourer
may have relied on the corresponding PET image to identify the bladder in this difficult case.
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3. Results

3.1.Multi-class segmentation
The model trained on multi-class segmentation data
sets performed well in delineating all of the investi-
gated organs (table 2). Large, visceral organs (e.g., liver,
lungs) and small, well-defined structures (e.g., aorta,
kidneys) achieved excellent performance in the eval-
uated metrics. Acceptable performance was achieved
in smaller organs which have traditionally proven
difficult for auto-segmentation models, such as the
pancreas (median DSC 0.788, median ASSD 1.9 mm)
and thyroid gland (median DSC 0.748, median ASSD
1.3 mm). CNN segmentations produced by the multi-
class model for an example patient in the external test
set are shown infigure 1.

Examples of cases with poor performance are
shown in figure 2. A large number of cases with poor
performance can be attributed to CT image artifacts,
abnormal pathology, or imperfections in the manual
ground truth contours.

In the test dataset, the median [range] of patient
age and weight were 66 years [39, 83] and 77 kg [49,
121]. The patient sex distribution was 14 female, 25
male, and 3 unknown. No Bonferroni corrected

p-values were statistically significant for the correla-
tion between DSC and patient age, patient weight, or
patient sex.

3.2. Sub-study I: Single- versusmulti-classmodel
The multi-class model outperformed the single-class
models for DSC, ASSD, HSD95, PPV, and Sensitivity
in 16/16, 14/16, 13/16, 12/16, and 4/16 target
organs, respectively (Wilcoxon paired test p< 0.05). A
comparison of DSC and ASSD between themulti-class
and single-class models is shown in figure 3. All
performancemetrics are summarized in table 2.

Themulti-classmodel’s superior performance was
especially pronounced in the pancreas (median DSC
0.788 versus 0.670, median ASSD 1.93 mm versus
3.48 mm) and the stomach (median DSC 0.902 versus
0.824, median ASSD 1.71 mm versus 2.88 mm), as
shown in figure 3(b). Visual analysis indicates that
improved performance of the multi-class model is
especially pronounced in areas where two organs are
touching, such as the liver and stomach boundary. An
example case comparing the multi-class and single-
classmodels to the ground truth is shown infigure 4.

Inference time for the singlemulti-classmodel was
substantially faster than the total inference time for the

Figure 3.Comparison of performance of themulti-class versus the single-class organ segmentationmodels in the held-out test dataset
of 42 images. Displayed performancemetrics are (A)Dice Similarity Coefficient (DSC) and (B)Average Symmetric SurfaceDistance
(ASSD). Significant differences betweenDSC values are indicated by ** for p< 0.001, and * for p< 0.05.

7

Biomed. Phys. Eng. Express 9 (2023) 065021 A JWeisman et al



16 single-class models. Across the external test set,
inference time for the multi-class model was 79 ±
29 seconds (mean ± sd). The total inference time for
all 16 single-classmodels was 537± 224 seconds.

3.3. Sub-study II:Manufacturer-specific versus
manufacturer-mixedmodels
For the 219 GE images, the manufacturer-mixed
approach had overall better performance (figure 5(a)).
The results from the manufacturer-mixed models had
significantly higher DSC for 9 of the 16 organs
compared to the model trained on only Siemens data.
Median improvements in DSC ranged from +0.0007
to +0.05. In the remaining 7 organs, no significant
differences in DSCwere found. Similar results indicat-
ing superior performance of the manufacturer-mixed
model were found for ASSD, HSD95, and PPV
(SupplementalMaterial table 4).

In the 186 Siemens images, results varied more
widely by organ (figure 5(b)). The manufacturer-mixed
models achieved significantly higher DSC compared to

the model trained with GE only images in the spleen,
lung, bladder, and bowel, but achieved significantly
lower DSC in the adrenals and pituitary gland. Median
differences in DSC for the significantly different organs
ranged from−0.04 to+0.01.Other organs showednon-
significant differences in DSC performance. Similar
mixed results was found for ASSD, HSD95, PPV, and
Sensitivity (SupplementalMaterial table 5).

No significant differences between patient age or
patient weight was found across the GE and Siemens
cohorts via Wilcoxon rank sum testing. The cohorts
had a similar number of female patients (37% for GE
data, 44% for Siemens data).

4.Discussion

In this study, we trained a CNN to segment sixteen
organs in a large, diverse dataset of whole-body CT
images. Our 3D U-Net model trained in a multi-class
setting was capable of segmenting the target organs
with excellent performance across a wide set of patient

Figure 4.Comparison ofmanual ground truth contours (left) to both themulti-class CNN (outline, right) and the single-class CNN
(filled in colors, right) for three slices in the abdomen of a single test patient. Areas of errors are often found along the border of two
structures (e.g. liver and stomach). Themulti-class CNNhad substantially better segmentation of the adrenal glands for this case
(DSC= 0.09 for single-classmodel, DSC= 0.66 formulti-classmodel).
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demographics, indicating the model should generalize
well to other patient cohorts. We investigated the
impact of multi-class versus single-class training and
observed that the multi-class model outperformed
smaller single-class models for a majority of organs
and performance metrics. We also investigated manu-
facturer-specific versus manufacturer-mixed training
and found segmentation quality to be largely indepen-
dent of scannermanufacturer.

Automated methods for organ segmentation, espe-
cially through the use of a multi-class model, can sig-
nificantly decrease the time required for any clinical task
requiring whole organ segmentation (Men et al 2017).
However, this time reduction does not necessarily
impact the overall time a clinican spends assessing
patients. Instead, it would enable the use of whole-organ
assessment in a clinical settingwhere it is currently not in
use. This is becausemanual segmentation of large organs
is so time consuming that it is not feasible to be added to
a clinical workflow.With a processing time of fewer than
two minutes per scan, organ contours can be generated
before clinicans begin their workflow and can be used to
quantify useful imaging features, such as organ size and
shape metrics, or location-specific PET tracer uptake
(e.g., liver SUVmean). These imaging features have been
shown to be useful in many applications, with examples

ranging from quantification of uptake or organ volume
for assessment of systemic disease (Martin et al 2022) or
immune response (Frelau et al 2021, Hribernik et al
2022), categorizing regions of interest based on their
location to complement radiological reads, and segment-
ing organs at risk for radiation treatment planning
(Chung et al 2021). Models trained on large, hetero-
geneous datasets which segment a large number of struc-
tures such as the onepresented in thisworkwould enable
a singleCNNtobeused acrossmanydifferent tasks.

The performance of our large, multi-classmodel is
similar to the results of several past studies (table 3).
Organs which are large and which demonstrate con-
trast between the neighbouring organs and the back-
ground tissue such as lung, liver, and spleen have
traditionally shown the highest segmentation perfor-
mance; our results demonstrate high performance in
lung, liver, and spleen (table 2). Similarly, organs that
are small or have poor contrast with neighbouring
organs such as pancreas, thyroid, and adrenal glands
showed lower to intermediate performance in our
study. Additionally, organs that have inherent shape
and surface complexity or variable appearance on CT
such as the bowel are also difficult to segment and have
shown poor segmentation performance (Men et al
2017); however, our model achieved a median bowel

Figure 5.Comparison ofmanufacturer-specific versusmanufacturer-mixed organ segmentationmodels in the (A) 219 images
acquired onGE scanners and (B) 186 images acquired on Siemens scanners. The performancemetric displayed is theDice Similarity
Coefficient (DSC). Significant differences betweenDSC values are indicated by ** for p< 0.001, and * for p< 0.05.
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DSC of 0.90, which is higher than past literature, and
demonstrates the robustness of CNN-based bowel
segmentation when trained with a large, hetero-
geneous dataset. A thorough review of CNN-based
organ segmentation for radiotherapy treatment plan-
ning can be found in (Samarasinghe et al 2021).

The model trained on delineations of multiple
organs outperformed single-class models for a major-
ity of target organs and evaluated performance
metrics. This may be due to the single-class model
architectures having a reduced number of feature
maps (by a factor of 4) compared to the multi-class
models. Single-class models were made smaller to
reduce the total time needed for inference: largermod-
els are more computationally expensive thus taking
longer to perform inference. Hence, the single-class
models showed reduced performance and increased
overall time to run. Despite the potential performance
disadvantages, single-class models may offer more
flexibility in training: curating datasets with all needed

organs is difficult, while many public datasets are
available with varying organs segmented and could be
combined for single-classmodel training.

It is possible that single-class models would have
superior performance to multi-class models if CNN
architecture is kept sufficiently large, or if additional
hyperparameter and architecture tuning were investi-
gated such as through model self configuration (Isen-
see et al 2021). For example, single-class models allow
for (and may achieve better performance with) soft-
max activation, which was not investigated in this
work. However, improved performance of the multi-
class CNNmay also be achieved with additional archi-
tecture tuning, or through the use of more sophisti-
cated CNN techniques such as transformer models
(Hatamizadeh et al 2022). Architecture tuning or self
configuration may also reveal that the optimal archi-
tecture for data from a single manufacturer or image
quality may differ from that of another manufacturer.
This assessment is outside the scope of the current
paper, but is of interest for futurework.

In our investigation of manufacturer-specific ver-
sus manufacturer-mixed segmentation models, our
results indicated that the manufacturer-mixed
approach achieved only minimally higher perfor-
mance despite being statistically significant. This indi-
cates that CT-based segmentationmodels may achieve
good performance on images acquired on scanners
frommanufacturers not included in the training data-
set. The ability of manufacturer-specific models to
generalize well to other scanner manufacturers in this
study may be due to the wide range of scanner models
present in the training set from each manufacturer,
and due to reconstruction protocols varying by ima-
ging site. Additionally, ll CT convolution kernels for
the GE and Siemens scans were smooth kernels that
have similar image quality (Mackin et al 2019), as is
expected for CT scans acquired for PET attenuation
correction. Thus, it is likely that thematching of image
quality across the training and testing datasets allows
for minimal differences in performance to be found
across the manufacturers. Further research is needed
to determine whether generalizability extends across
CT image quality (e.g., CT dose, kernel sharpness,
contrast agents). In those scenarios, image standardi-
zation algorithms may allow for improved general-
ization across CT image quality.

This study had several important limitations that
should be discussed. Our training data set was restric-
ted to CT scans of adults imaged at centers in the USA.
We conducted the study using one CNN architecture,
U-Net, which has demonstrated excellent perfor-
mance in similar segmentation tasks. Future research
regarding our findings should be to validate using
additional CNN hyperparameters. Finally, our analy-
sis of scanner manufacturer focused on GE and Sie-
mens, currently two of the largest manufacturers of
CT scanners. However, generalizability to CT images
fromother vendors should also be investigated.

Table 3.Comparison of segmentation performance between
previous studies and the current study literature as quantified by
Dice similarity coefficient (DSC). Note that while past studies
typically reportmeanDSC, we reportMedianDSC, as distributions
ofDSCwere not normally distributed in our study.

Organ

MeanDSCvalues in past

studies

MedianDSC values in

current study

Liver 0.89 (Zhu et al 2019) 0.96

0.95 (Weston et al 2020)
0.95 (Gibson et al 2018)
0.952 (Rister et al 2020)

Spleen 0.96 (Gibson et al 2018) 0.94

0.97 (Isensee et al 2021)
Lung 0.95 (Rister et al 2020) 0.97

0.95 (Zhu et al 2019)
0.958 (Mirando et al

2018)
Thyroid 0.89 (Chung et al 2021) 0.75

Kidney 0.91 (Jackson et al 2018) 0.92

0.918 (Rister et al 2020)
0.93 (Weston et al 2020)
0.93 (Lamba et al 2019)
0.95 (Gibson et al 2018)

Pancreas 0.78 (Gibson et al 2018) 0.79

0.79 (Weston et al 2020)
0.82 (Isensee et al 2021)
0.85 (Sundar et al 2022)

Bladder 0.77 (Rister et al 2020) 0.87

0.86 (Sundar et al 2022)
0.932 (Schreier et al 2020)

Aorta 0.92 (Haq et al 2020) 0.92

Adrenals 0.69 (Weston et al 2020) 0.67

0.72 (Sundar et al 2022)
0.84 (Robinson-Weiss

et al 2023)
Bowel 0.65 (Men et al 2017) 0.90

0.88 (Gonzalez et al 2021)
Stomach 0.89 (Gibson et al 2018) 0.90

Heart 0.95 (Chung et al 2021) 0.94

Salivary 0.81 (Park et al 2021) 0.82

Glands 0.86 (Hänsch et al 2019)
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5. Conclusion

A 3D U-Net model produced high-quality segmenta-
tions in a multi-class setting. A single multi-class model
outperformedmultiple smaller, single-class models, and
performance was consistent across models trained using
data from multiple vendors. The multi-class organ
segmentation model is a component of the software
device, TRAQinform IQ, a software-based medical
device developed by AIQ Solutions for the analysis of
PET and PET/CT data regarding identified regions of
interest and the quantification of change during treat-
ment. CNNs for segmenting organs trained on large
imaging datasets with characteristics similar to real-
world clinical data have potential for immediate clinical
translationwithin these types of software devices.
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