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Abstract (300/300 words) 

Objective: Automated organ segmentation on CT images can enable the clinical use of advanced quantitative software 

devices, but model performance sensitivities must be understood before widespread adoption can occur. The goal of this 

study was to investigate performance differences between Convolutional Neural Networks (CNNs) trained to segment one 

(single-class) versus multiple (multi-class) organs, and between CNNs trained on scans from a single manufacturer versus 

multiple manufacturers.  

Methods: The multi-class CNN was trained on CT images obtained from 455 whole-body PET/CT scans (413 for training, 

42 for testing) taken with Siemens, GE, and Phillips PET/CT scanners where 16 organs were segmented. The multi-class 

CNN was compared to 16 smaller single-class CNNs trained using the same data, but with segmentations of only one organ 

per model. In addition, CNNs trained on Siemens-only (N=186) and GE-only (N=219) scans (manufacturer-specific) were 

compared with CNNs trained on data from both Siemens and GE scanners (manufacturer-mixed). Segmentation performance 

was quantified using five performance metrics, including the Dice Similarity Coefficient (DSC). 

Results: The multi-class CNN performed well compared to previous studies, even in organs usually considered difficult auto-

segmentation targets (e.g., pancreas, bowel). Segmentations from the multi-class CNN were significantly superior to those 

from smaller single-class CNNs in most organs, and the 16 single-class models took, on average, six times longer to segment 

all 16 organs compared to the single multi-class model. The manufacturer-mixed approach achieved minimally higher 

performance over the manufacturer-specific approach.  

Significance: A CNN trained on contours of multiple organs and CT data from multiple manufacturers yielded high-quality 

segmentations. Such a model is an essential enabler of image processing in a software device that quantifies and analyzes 

such data to determine a patient’s treatment response. To date, this activity of whole organ segmentation has not been adopted 

due to the intense manual workload and time required. 

Keywords: Multi-site, organ segmentation, whole-body, multi-scanner, CNN 

 

 

1. Introduction 
Segmentation of organs on Computed Tomography 

(CT), Positron Emission Tomography (PET), or Magnetic 

Resonance Imaging (MRI) scans has proven useful for 
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many medical image analysis tasks. Examples include 

diagnosis (Diaconis and Rao 1980, Mahmood et al 

2019), treatment response monitoring (Padhani and 

Koh 2011), radiotherapy treatment planning 

(Thorwarth 2015, Stieb et al 2019), and treatment-

related toxicity detection (Frelau et al 2021, Hribernik 

et al 2022). However, when performed manually, 

organ segmentation is so time-consuming that it is not 

feasible to integrate into a clinical setting (Vaassen et 

al 2020, van der Veen et al 2020) and subject to 

substantial inter-observer variations (Hansen et al 

2018, Lorenzen et al 2021). Convolutional Neural 

Networks (CNNs) have demonstrated the ability to 

perform automated segmentation of multiple 

anatomical sites (Kavur et al 2021, Liu et al 2018, 

2020), and have been shown to reduce both time 

spent on segmentation and inter-observer variability 

(Vaassen et al 2020, van der Veen et al 2020, Gooding 

et al 2018, Trimpl et al 2022).  

Implementing CNN-based segmentation in a clinical 

setting requires careful consideration of several 

practical issues. Commercially available scanners vary 

both in terms of imaging hardware and reconstruction 

software. Options for segmentation algorithm 

architecture also differ widely, each having their own 

specific advantages and drawbacks (Moeskops et al 

2016, Minaee et al 2022). Finally, the variety and 

complexity of the organs to be segmented vary 

depending on the clinical use case. These factors may 

hamper the implementation of CNN-based 

segmentation workflows. For clinical use, it is crucial 

that automated medical image processing steps, such 

as segmentation by CNN, be trained and evaluated in 

large, heterogeneous datasets representing a realistic 

variety of imaging hardware they are likely to 

encounter in the clinic. 

Although CNN-based segmentation is becoming more 

widely adopted in some radiotherapy workflows (Cha 

et al 2021, Chang et al 2021, Schreier et al 2020), it is 

not widely used in settings aiming to assess response 

to therapy in patients with advanced cancers. In 

addition, a number of uncertainties and unknowns 

remain to be sufficiently addressed. Among these are 

possible scanner- or manufacturer-specific effects 

(e.g., noise patterns) as well as the question of model 

performance when data from multiple institutions are 

used (Ng et al 2021, Roth et al 2020). Additionally, for 

the segmentation of multiple organs, it is unknown 

whether features learned for the segmentation of one 

organ are optimal for the segmentation of others, and 

thus whether optimal performance is achieved by 

training one multi-class model, or by training multiple 

single-class models (Amjad et al 2022).  

Our aims in this study were: 1) to assess the 

performance of CNN-based multi-class segmentation 

model in a large, diverse data set containing CT scans 

from multiple PET/CT scanner manufacturers, and 2) 

to evaluate the sensitivity of segmentation 

performance to the training setting (multi- vs. single-

class training) and to the scanner manufacturer used 

for training and testing. 

2. Methods 

2.1 Data Set 

The imaging data used in this study consisted of 455 

retrospectively collected whole-body CT scans either 

from public sources or obtained by AIQ Solutions as 

part of research collaborations with academic medical 

centers. These cohorts were selected for their range of 

patient sex and disease burden, which can impact the 

presentation of certain organs.  

Scans were acquired on either Siemens Healthineers 

(186 scans, 11 scanner models), GE Medical Systems 

scanners (219 scans, 8 scanner models), or Phillips 

Medical Systems machines (26 scans, 5 scanner 

models) between 2005 and 2021. For 24 scans, 

scanner information was unavailable. As scans were 

acquired retrospectively, scans were reconstructed 

according to each sites clinical workflow and thus 

encompassed a variety of reconstruction settings. 

Details of the patient demographics and scanner 

information is outlined in Table 1.  

In each scan, sixteen structures were manually 

contoured by either an experienced nuclear medicine 

physician with 15 years’ experience (author SC) or a 

radiographer with over 10 years’ experience: liver, 

spleen, lungs, thyroid, kidneys, pancreas, bladder, 
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aorta, adrenal glands, bowel, stomach, heart, eyes, 

salivary glands (consisting of parotid and 

submandibular glands), pituitary gland, and choroid 

plexus. Note that while not all structures are organs, 

the term “organ” is used in this work for brevity. Image 

contouring and review was completed using 3D Slicer 

(Kikinis et al 2014).  

2.2 CNN model architecture and training 

For the multi-class segmentation model, 393 CT scans 

were used for training (86%), 20 scans were used for 

monitoring training progress (4%), and 42 scans were 

held out as an external test set (10%). 

A deep learning model with a fully 3D U-net 

architecture was trained for organ segmentation, 

outlined as follows. As in (Çiçek et al 2016), the U-net 

architecture involves an “analysis” path and a 

“synthesis” path, with skip connections that allows the 

network to learn features at multiple resolutions. A 

single input channel was used for the CT image, which 

was resampled to a grid size of 2.0×2.0×2.0 mm and 

normalized such that CT values within the patient had 

a mean of 0 and standard deviation of 1.  

Patches of size 128×128×128 voxels were extracted 

from the training images using class balancing to 

ensure an equal number of patches were sampled 

from each target organ. In total, 34 patches per 

patient (2 per class, including background) were 

extracted before training, resulting in 15,470 total 

patches. Data augmentation including random 

Gaussian noise, random rotations, random flips, and 

random elastic transformations, were randomly 

chosen and applied to 70% of the training patches on 

the fly. The loss was the average of the cross entropy 

and dice similarity coefficient (DSC), which was 

optimized using stochastic gradient descent with a 

learning rate of 0.01 decreased by a factor of 2 every 

20 epochs for a total of 150 epochs. One epoch was 

defined as the process of all 15,470 patches 

undergoing one forward pass through the model 

exactly once.   

For the testing dataset, inference was performed on 

processed images (cubic voxel size and normalized CT) 

using overlapping patches with a step size of 64 voxels 

(half of the patch size). Voxels at the center of each 

patch were weighted with higher confidence using a 

3D Gaussian function. After patch inference, the U-net 

probability maps were resampled back to the natural 

CT resolution using linear interpolation. Final 

segmentation maps were then generated by taking the 

maximum probability in each segmentation class.  

A step involving the largest connected component 

analysis was taken to remove extraneous 

segmentations. For the liver, spleen, pancreas, aorta, 

bladder, bowel, stomach, and heart, the single largest 

connected component was taken. For the lungs, 

thyroid, and kidneys, the largest two connected 

components were taken. This step was applied to the 

outputs of all trained models. 

Models were trained using an NVIDIA 3090 RTX GPU 

with 24 GB of VRAM. 

2.2 Sub-study I: Single- vs multi-class model 

To investigate the impact of single- versus multi-class 

training on segmentation performance, sixteen organ-

specific models were trained for each organ using the 

same training data set as the mutli-class model, but 

with contours of only one organ as targets. All training 

parameters (train/validation/test split, optimizer, loss, 

learning rate) were kept identical to the multi-class 

model. However, single class models were made 

smaller by reducing the number of feature maps by a 

factor of 4. This was done to reduce the inference time 

of the single-class models, as maintaining the same 

large model size for 16 individual single-class models 

would result in an inference time rougly 16 times that 

of the multi-class model. The total inference time for 

each patient was extracted and compared between 

the multi-class and single-class models.  

2.3 Sub-study II: Manufacturer-specific vs. 

manufacturer-mixed models 

To determine the effect of scanner manufacturer on 

CNN segmentation performance, four models were 

trained. Two manufacturer-specific models were 

trained: a GE-only model trained on 186 CT scans from 

GE scanners, and a Siemens-only model trained on 186 
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CT scans from Siemens scanners. Each model was 

tested on all scans available from the other 

manufacturer. Two manufacturer-mixed models were 

trained with the same data as used for the 

manufacturer-specific models using an approach 

similar to 2-fold cross validation: each model was 

trained with 186 CT scans split evenly between GE and 

Siemens scanners, and evaluated on the remaining 

scans. Due to the small number of CT scans acquired 

on Phillips scanners, these data were excluded from 

this substudy. In addition, the 24 scans for which 

scanner information was not available were excluded 

from this substudy.  

2.4 Metrics for segmentation evaluation 

Model performance was quantified using a 

combination of overlap, surface distance, and voxel-

wise metrics: 

The Dice Similarity Coefficient (DSC) 

𝐷𝑆𝐶(𝐴, 𝐵) = 2
|𝐴 ∩ 𝐵|

|𝐴| + |𝐵|
 

 where A and B are the evaluated and 

reference segmentations, respectively. 

The average symmetric surface distance (ASSD) 

𝐴𝑆𝑆𝐷(𝐴, 𝐵) =
1

|𝑆𝐴 + 𝑆𝐵|
( ∑ 𝑑(𝑠, 𝑆𝐵)

𝑠∈𝑆𝐴

+ ∑ 𝑑(𝑠, 𝑆𝐴)

𝑠∈𝑆𝐵

) 

where SA and SB are the surfaces of the 

evaluated and reference segmentations, respectively, 

and d is the minimum distance between a voxel s and 

a set of boundary voxels S’: 

𝑑(𝑠, 𝑆′) = 𝑚𝑖𝑛
𝑠′∈𝑆′

‖𝑠 − 𝑠′‖2 . 

The 95% Hausdorff distance (HSD95), which is the 95th 

percentile P95 of the set of surface distances between 

the evaluated and reference segmentations:  

𝐻𝑆𝐷95(𝐴, 𝐵) = 𝑃95(𝑑𝑠∈𝑆𝐵
(𝑠, 𝑆𝐴), 𝑑𝑠∈𝑆𝐴

(𝑠, 𝑆𝐵)) . 

The voxel-wise sensitivity: 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 . 

The voxel-wise positive predictive value (PPV): 

𝑃𝑃𝑉 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 . 

2.5 Statistical analysis 

The multi-class segmentation model was assessed for 

bias in the test dataset by calculating Spearman 

correlation of DSC with patient age and weight. A 

Wilcoxon rank sum test was used to assess differences 

between patient sex. Differences in segmentation 

performance by single-class versus multi-class training 

setting were assessed using paired Wilcoxon Signed-

Rank tests. Differences in segmentation performance 

across the manufacturer-specific and manufacturer-

mixed models were assessed with paired Wilcoxon 

rank sum test. P-values were corrected for multiple 

hypotheses using the Bonferroni method. Following 

correction, p-values below 0.05 were considered 

statistically significant. 

3. Results 

3.1 Multi-class segmentation 

The model trained on multi-class segmentation data 

sets performed well in delineating all of the 

investigated organs (Table 2). Large, visceral organs 

(e.g., liver, lungs) and small, well-defined structures 

(e.g., aorta, kidneys) achieved excellent performance 

in the evaluated metrics. Acceptable performance was 

achieved in smaller organs which have traditionally 

proven difficult for auto-segmentation models, such as 

the pancreas (median DSC 0.788, median ASSD 1.9 

mm) and thyroid gland (median DSC 0.748, median 

ASSD 1.3 mm). CNN segmentations produced by the 

multi-class model for an example patient in the 

external test set are shown in Figure 1. 

Examples of cases with poor performance are shown 

in Figure 2. A large number of cases with poor 

performance can be attributed to CT image artifacts, 
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abnormal pathology, or imperfections in the manual 

ground truth contours.  

In the test dataset, the median [range] of patient age 

and weight were 66 years [39, 83] and 77 kg [49, 121]. 

The patient sex distribution was 14 female, 25 male, 

and 3 unknown. No Bonferroni corrected p-values 

were statistically significant for the correlation 

between DSC and patient age, patient weight, or 

patient sex.  

3.2 Sub-study I: Single- vs. multi-class model 

The multi-class model outperformed the single-class 

models for DSC, ASSD, HSD95, PPV, and Sensitivity in 

16/16, 14/16, 13/16, 12/16, and 4/16 target organs, 

respectively (Wilcoxon paired test p<0.05). A 

comparison of DSC and ASSD between the multi-class 

and single-class models is shown in Figure 3. All 

performance metrics are summarized in Table 2.  

The multi-class model’s superior performance was 

especially pronounced in the pancreas (median DSC 

0.788 vs. 0.670, median ASSD 1.93 mm vs. 3.48 mm) 

and the stomach (median DSC 0.902 vs. 0.824, median 

ASSD 1.71 mm vs. 2.88 mm), as shown in Figure 3b. 

Visual analysis indicates that improved performance of 

the multi-class model is especially pronounced in areas 

where two organs are touching, such as the liver and 

stomach boundary. An example case comparing the 

multi-class and single-class models to the ground truth 

is shown in Figure 4. 

Inference time for the single multi-class model was 

substantially faster than the total inference time for 

the 16 single-class models. Across the external test set, 

inference time for the multi-class model was 79 ± 29 

seconds (mean ± sd). The total inference time for all 16 

single-class models was 537 ± 224 seconds.  

3.3 Sub-study II: Manufacturer-specific vs. 

manufacturer-mixed models 

For the 219 GE images, the manufacturer-mixed 

approach had overall better performance (Figure 5a). 

The results from the manufacturer-mixed models had 

significantly higher DSC for 9 of the 16 organs 

compared to the model trained on only Siemens data. 

Median improvements in DSC ranged from +0.0007 to 

+0.05. In the remaining 7 organs, no significant 

differences in DSC were found. Similar results 

indicating superior performance of the manufacturer-

mixed model were found for ASSD, HSD95, and PPV 

(Supplemental Material Error! Reference source not 

found.).  

In the 186 Siemens images, results varied more widely 

by organ (Figure 5b). The manufacturer-mixed models 

achieved significantly higher DSC compared to the 

model trained with GE only images in the spleen, lung, 

bladder, and bowel, but achieved significantly lower 

DSC in the adrenals and pituitary gland. Median 

differences in DSC for the significantly different organs 

ranged from -0.04 to +0.01. Other organs showed non-

significant differences in DSC performance. Similar 

mixed results was found for ASSD, HSD95, PPV, and 

Sensitivity (Supplemental Material Error! Reference 

source not found.).  

No significant differences between patient age or 

patient weight was found across the GE and Siemens 

cohorts via Wilcoxon rank sum testing. The cohorts 

had a similar number of female patients (37% for GE 

data, 44% for Siemens data).  

4. Discussion 

In this study, we trained a CNN to segment sixteen 

organs in a large, diverse dataset of whole-body CT 

images. Our 3D U-Net model trained in a multi-class 

setting was capable of segmenting the target organs 

with excellent performance across a wide set of 

patient demographics, indicating the model should 

generalize well to other patient cohorts. We 

investigated the impact of multi-class versus single-

class training and observed that the multi-class model 

outperformed smaller single-class models for a 

majority of organs and performance metrics. We also 

investigated manufacturer-specific versus 

manufacturer-mixed training and found segmentation 

quality to be largely independent of scanner 

manufacturer.  

Automated methods for organ segmentation, 

especially through the use of a multi-class model, can 
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significantly decrease the time required for any clinical 

task requiring whole organ segmentation (Men et al 

2017). However, this time reduction does not 

necessarily impact the overall time a clinican spends 

assessing patients. Instead, it would enable the use of 

whole-organ assessment in a clinical setting where it is 

currently not in use. This is because manual 

segmentation of large organs is so time consuming 

that it is not feasible to be added to a clinical 

workflow. With a processing time of fewer than two 

minutes per scan, organ contours can be generated 

before clinicans begin their workflow and can be used 

to quantify useful imaging features, such as organ size 

and shape metrics, or location-specific PET tracer 

uptake (e.g., liver SUVmean). These imaging features 

have been shown to be useful in many applications, 

with examples ranging from quantification of uptake 

or organ volume for assessment of systemic disease 

(Martin et al 2022) or immune response (Frelau et al 

2021, Hribernik et al 2022), categorizing regions of 

interest based on their location to complement 

radiological reads, and segmenting organs at risk for 

radiation treatment planning (Chung et al 2021). 

Models trained on large, heterogeneous datasets 

which segment a large number of structures such as 

the one presented in this work would enable a single 

CNN to be used across many different tasks.  

The performance of our large, multi-class model is 

similar to the results of several past studies (Table 3). 

Organs which are large and which demonstrate 

contrast between the neighbouring organs and the 

background tissue such as lung, liver, and spleen have 

traditionally shown the highest segmentation 

performance; our results demonstrate high 

performance in lung, liver, and spleen (Table 2). 

Similarly, organs that are small or have poor contrast 

with neighbouring organs such as pancreas, thyroid, 

and adrenal glands showed lower to intermediate 

performance in our study. Additionally, organs that 

have inherent shape and surface complexity or 

variable appearance on CT such as the bowel are also 

difficult to segment and have shown poor 

segmentation performance (Men et al 2017); however, 

our model achieved a median bowel DSC of 0.90, 

which is higher than past literature, and demonstrates 

the robustness of CNN-based bowel segmentation 

when trained with a large, heterogeneous dataset. A 

thorough review of CNN-based organ segmentation for 

radiotherapy treatment planning can be found in 

(Samarasinghe et al 2021). 

The model trained on delineations of multiple organs 

outperformed single-class models for a majority of 

target organs and evaluated performance metrics. This 

may be due to the single-class model architectures 

having a reduced number of feature maps (by a factor 

of 4) compared to the multi-class models. Single-class 

models were made smaller to reduce the total time 

needed for inference: larger models are more 

computationally expensive thus taking longer to 

perform inference. Hence, the single-class models 

showed reduced performance and increased overall 

time to run. Despite the potential performance 

disadvantages, single-class models may offer more 

flexibility in training: curating datasets with all needed 

organs is difficult, while many public datasets are 

available with varying organs segmented and could be 

combined for single-class model training.   

It is possible that single-class models would have 

superior performance to multi-class models if CNN 

architecture is kept sufficiently large, or if additional 

hyperparameter and architecture tuning were 

investigated such as through model self configuration 

(Isensee et al 2021). For example, single-class models 

allow for (and may achieve better performance with) 

softmax activation, which was not investigated in this 

work. However, improved performance of the multi-

class CNN may also be achieved with additional 

architecture tuning, or through the use of more 

sophisticated CNN techniques such as transformer 

models (Hatamizadeh et al 2022). Architecture tuning 

or self configuration may also reveal that the optimal 

architecture for data from a single manufacturer or 

image quality may differ from that of another 

manufacturer. This assessment is outside the scope of 

the current paper, but is of interest for future work.  

In our investigation of manufacturer-specific versus 

manufacturer-mixed segmentation models, our results 

indicated that the manufacturer-mixed approach 

achieved only minimally higher performance despite 
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being statistically significant. This indicates that CT-

based segmentation models may achieve good 

performance on images acquired on scanners from 

manufacturers not included in the training dataset. 

The ability of manufacturer-specific models to 

generalize well to other scanner manufacturers in this 

study may be due to the wide range of scanner models 

present in the training set from each manufacturer, 

and due to reconstruction protocols varying by 

imaging site. Additionally, ll CT convolution kernels for 

the GE and Siemens scans were smooth kernels that 

have similar image quality (Mackin et al 2019), as is 

expected for CT scans acquired for PET attenuation 

correction. Thus, it is likely that the matching of image 

quality across the training and testing datasets allows 

for minimal differences in performance to be found 

across the manufacturers. Further research is needed 

to determine whether generalizability extends across 

CT image quality (e.g., CT dose, kernel sharpness, 

contrast agents). In those scenarios, image 

standardization algorithms may allow for improved 

generalization across CT image quality.  

This study had several important limitations that 

should be discussed. Our training data set was 

restricted to CT scans of adults imaged at centers in 

the USA. We conducted the study using one CNN 

architecture, U-Net, which has demonstrated excellent 

performance in similar segmentation tasks. Future 

research regarding our findings should be to validate 

using additional CNN hyperparameters. Finally, our 

analysis of scanner manufacturer focused on GE and 

Siemens, currently two of the largest manufacturers of 

CT scanners. However, generalizability to CT images 

from other vendors should also be investigated. 

5. Conclusion 

A 3D U-Net model produced high-quality 

segmentations in a multi-class setting. A single multi-

class model outperformed multiple smaller, single-

class models, and performance was consistent across 

models trained using data from multiple vendors. The 

multi-class organ segmentation model is a component 

of the software device, TRAQinform IQ, a software-

based medical device developed by AIQ Solutions for 

the analysis of PET and PET/CT data regarding 

identified regions of interest and the quantification of 

change during treatment. CNNs for segmenting organs 

trained on large imaging datasets with characteristics 

similar to real-world clinical data have potential for 

immediate clinical translation within these types of 

software devices. 
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Table 1: Patient and scan information for all patients, the patients scanned on Siemens scanners, and for patients scanned on GE scanners. 

For cases where data was lost during scan transfer or anonymization, “Unknown” is listed. 

 Siemens (n=186) GE (n=219) Philips (n=26) 

Patient sex, n 
Female / Male / Unknown 

81 / 99 / 6 82 / 130 / 7 14 / 12 / 0 

Patient age, years 
Median [range] 

64 [22, 91] 65 [33, 88] 60.5 [33, 86] 

Patient weight, kg 
Median [range] 76.7 [42.2, 125.2] 79.0 [36.0, 141.0] 77.4 [47.4, 121.0] 

Scanner model 

Biograph Models 1023, 1024 (n=45) 

Biograph HiRes Model 1080 (n=40) 

Biograph 16 (n=39) 
Biograph TrueV Models 1093, 1094 (n=22) 

Biograph64_mCT 4R (n=14) 

Biograph64 (n=14) 

Biograph128 (n=5) 

Biograph 6 (n=4) 

Emotion Duo Model 1062 (n=3) 

Discovery STE (n=71) 
Discovery ST (n=60)  

Discovery LS (n=29) 

Discovery 710 (n=27) 

Discovery MI (n=19) 

Discovery MI DR (n=6) 

Discovery RX (n=5) 
Discovery 690 (n=2) 

 

GEMINI TF TOF 16 (n=9) 

GEMINI TF Big Bore (n=8) 

Guardian Body (n=4) 

Allegro Body (n=3) 

Vereos PET/CT (n=2) 

Slice thickness, mm  
5.0 (n=121) 

4.0 (n=57) 
3.0 (n=8) 

3.75 (n=87) 
5.00 (n=78) 

3.27 (n=47) 

2.50 (n=7) 

5.0 (n=14) 

4.0 (n=12) 

Convolution Kernel 

B30f (n=47) 
B31s (n=33) 

B30s (n=31) 

B31f (n=25) 
B40s (n=23) 

Br38f (n=14) 

B19f (n=10) 
B40f (n=2) 

B41f (n=1) 

STANDARD (n=111) 
SOFT (n=62) 

Unknown (n=46) 

B (n=24) 

Unknown (n=2) 

 

 

Table 2: Segmentation performance of the multi-organ model and single-organ models. Multi-organ versus single-organ model 

performance was assessed with Wilcoxon paired tests. P values were Bonferroni corrected for the number of target organs (16) and the 

number of performance metrics (5). Significantly better performance are bolded. DSC: Dice Similarity Coefficient, ASSD: Average 

Symmetric Surface Distance, HSD95, 95th percentile Hausdorff distance, PPV: Positive Predictive Value. 

Organ DSC ASSD [mm] HSD95 [mm] PPV Sensitivity 

Liver           

Multi 0.961 [0.956, 0.966] 1.07 [0.98, 1.36] 3.63 [3.27, 4.31] 0.959 [0.954, 0.969] 0.963 [0.953, 0.973] 
Single 0.952 [0.947, 0.956] 1.37 [1.25, 1.79] 4.24 [3.81, 5.83] 0.953 [0.942, 0.963] 0.953 [0.942, 0.965] 

p-value <0.001 <0.001 <0.001 <0.001 0.21 

Spleen           
Multi 0.944 [0.931, 0.951] 0.85 [0.72, 1.05] 3.09 [2.5, 3.87] 0.944 [0.927, 0.959] 0.944 [0.933, 0.957] 

Single 0.93 [0.896, 0.941] 0.98 [0.85, 1.62] 3.34 [2.93, 4.98] 0.939 [0.914, 0.957] 0.93 [0.91, 0.946] 

p-value <0.001 <0.001 0.037 0.003 1.0 
Lung           

Multi 0.969 [0.961, 0.975] 0.82 [0.63, 1.17] 2.85 [2.01, 3.37] 0.967 [0.959, 0.975] 0.974 [0.965, 0.979] 

Single 0.968 [0.955, 0.974] 0.89 [0.62, 1.33] 2.83 [2.18, 4] 0.969 [0.958, 0.975] 0.969 [0.954, 0.976] 
p-value <0.001 0.002 0.18 <0.001 1.0 

Thyroid           

Multi 0.748 [0.705, 0.812] 1.31 [1.07, 1.81] 4.69 [3.27, 5.93] 0.805 [0.744, 0.854] 0.715 [0.64, 0.814] 
Single 0.675 [0.603, 0.725] 1.66 [1.43, 2.24] 4.89 [4.12, 7.84] 0.827 [0.738, 0.87] 0.604 [0.528, 0.657] 

p-value <0.001 <0.001 0.014 <0.001 1.0 
Kidney           

Multi 0.924 [0.912, 0.937] 0.88 [0.77, 1.12] 3.07 [2.52, 4] 0.92 [0.899, 0.94] 0.935 [0.905, 0.951] 

Single 0.904 [0.865, 0.924] 1.1 [0.9, 1.77] 3.4 [2.76, 5.84] 0.914 [0.882, 0.938] 0.919 [0.863, 0.933] 
p-value <0.001 <0.001 0.001 <0.001 1.0 
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Pancreas           

Multi 0.788 [0.721, 0.84] 1.93 [1.52, 3.03] 6.3 [4.62, 12.48] 0.84 [0.749, 0.89] 0.78 [0.738, 0.845] 

Single 0.67 [0.584, 0.741] 3.48 [2.78, 6.37] 13.1 [7.9, 27.68] 0.777 [0.634, 0.88] 0.603 [0.512, 0.709] 
p-value <0.001 <0.001 0.013 <0.001 0.5 

Bladder           

Multi 0.871 [0.791, 0.923] 1.36 [1.07, 2.04] 4.25 [3.27, 6.51] 0.892 [0.752, 0.946] 0.901 [0.787, 0.942] 

Single 0.794 [0.697, 0.878] 2.19 [1.72, 2.79] 7.09 [4.66, 9.03] 0.839 [0.67, 0.916] 0.822 [0.69, 0.894] 

p-value <0.001 <0.001 0.017 0.004 0.034 

Aorta           
Multi 0.919 [0.91, 0.928] 1.06 [0.94, 1.13] 3.29 [2.81, 4.19] 0.915 [0.896, 0.93] 0.926 [0.906, 0.941] 

Single 0.889 [0.873, 0.907] 1.44 [1.24, 1.63] 4.27 [3.91, 5] 0.909 [0.868, 0.924] 0.878 [0.862, 0.905] 

p-value <0.001 <0.001 0.015 <0.001 0.75 
Adrenals           

Multi 0.67 [0.609, 0.725] 1.36 [1.08, 2.33] 5.02 [3.52, 8.6] 0.748 [0.676, 0.814] 0.619 [0.555, 0.685] 

Single 0.551 [0.446, 0.614] 2.2 [1.71, 3.5] 7.7 [5.89, 12.84] 0.788 [0.7, 0.828] 0.418 [0.326, 0.501] 
p-value <0.001 <0.001 0.001 <0.001 1.0 

Bowel           

Multi 0.903 [0.88, 0.922] 1.47 [1.16, 2.02] 4.51 [3.53, 6.96] 0.907 [0.865, 0.93] 0.922 [0.888, 0.934] 

Single 0.851 [0.807, 0.874] 2.44 [1.96, 3.31] 9.22 [6.94, 13.49] 0.88 [0.832, 0.903] 0.864 [0.789, 0.889] 

p-value <0.001 <0.001 <0.001 <0.001 <0.001 

Stomach           
Multi 0.902 [0.873, 0.928] 1.71 [1.17, 2.26] 4.8 [3.87, 9.56] 0.924 [0.886, 0.944] 0.91 [0.842, 0.937] 

Single 0.824 [0.739, 0.877] 2.88 [2.01, 5.52] 11.69 [5.74, 23.06] 0.905 [0.837, 0.942] 0.804 [0.621, 0.858] 

p-value <0.001 <0.001 <0.001 <0.001 1.0 
Heart           

Multi 0.941 [0.927, 0.948] 1.46 [1.23, 1.99] 4.86 [3.52, 6.38] 0.944 [0.929, 0.961] 0.94 [0.922, 0.956] 

Single 0.925 [0.904, 0.937] 1.88 [1.47, 2.51] 5.84 [4.25, 7.74] 0.938 [0.906, 0.957] 0.927 [0.896, 0.95] 
p-value <0.001 <0.001 <0.001 0.01 0.67 

Eyes           

Multi 0.854 [0.835, 0.878] 1.08 [0.87, 1.31] 3.27 [2.71, 3.92] 0.882 [0.828, 0.911] 0.848 [0.829, 0.865] 
Single 0.84 [0.817, 0.855] 1.23 [0.97, 1.43] 3.27 [2.86, 4.01] 0.872 [0.837, 0.91] 0.815 [0.783, 0.837] 

p-value 0.001 0.57 0.23 0.001 1.0 

Salivary           
Multi 0.818 [0.79, 0.847] 1.48 [1.37, 1.68] 4.13 [3.82, 5.15] 0.833 [0.782, 0.874] 0.823 [0.781, 0.848] 

Single 0.759 [0.722, 0.783] 2.28 [1.95, 2.55] 6.11 [5.09, 7.03] 0.77 [0.686, 0.821] 0.757 [0.714, 0.795] 

p-value <0.001 <0.001 <0.001 <0.001 <0.001 
Pituitary           

Multi 0.459 [0.362, 0.596] 1.66 [1.18, 2.18] 4.17 [3.27, 4.89] 0.57 [0.461, 0.775] 0.424 [0.34, 0.628] 

Single 0.229 [0.116, 0.352] 2.68 [1.66, 3.43] 4.84 [3.77, 6.93] 1 [0.804, 1] 0.132 [0.062, 0.219] 
p-value <0.001 <0.001 <0.001 <0.001 <0.001 

Choroid Plexus           

Multi 0.537 [0.445, 0.637] 2.05 [1.63, 2.75] 5.49 [4.43, 9.57] 0.608 [0.515, 0.676] 0.522 [0.383, 0.645] 
Single 0.336 [0.276, 0.444] 3.33 [2.49, 4.25] 8.45 [7.6, 12.18] 0.418 [0.336, 0.6] 0.284 [0.208, 0.39] 

p-value <0.001 0.32 1.0 <0.001 0.43 

 

Table 3 Comparison of segmentation performance between previous studies and the current study literature as quantified by Dice 

similarity coefficient (DSC). Note that while past studies typically report mean DSC, we report Median DSC, as distributions of DSC were 

not normally distributed in our study. 

Organ 
Mean DSC values in past 

studies 

Median DSC values in 

current study 

   

Liver 

0.89 (Zhu et al 2019) 

0.95 (Weston et al 2020) 
0.95 (Gibson et al 2018) 

0.952 (Rister et al 2020)  

0.96 

Spleen 
0.96 (Gibson et al 2018) 

0.97 (Isensee et al 2021) 

0.94 

Lung 

0.95 (Rister et al 2020) 

0.95 (Zhu et al 2019) 
0.958 (Mirando et al 2018) 

0.97 

Thyroid 0.89 (Chung et al 2021) 0.75 

Kidney 

0.91 (Jackson et al 2018) 
0.918 (Rister et al 2020) 

0.93 (Weston et al 2020) 
0.93 (Lamba et al 2019) 

0.95 (Gibson et al 2018) 

0.92 

Pancreas 

0.78 (Gibson et al 2018) 
0.79 (Weston et al 2020) 

0.82 (Isensee et al 2021) 

0.79 
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0.85 (Sundar et al 2022) 

Bladder 

0.77(Rister et al 2020) 

0.86 (Sundar et al 2022) 
0.932 (Schreier et al 2020) 

0.87 

Aorta 0.92 (Haq et al 2020) 0.92 

Adrenals 

0.69 (Weston et al 2020) 
0.72 (Sundar et al 2022) 

0.84 (Robinson-Weiss et al 

2023) 

0.67 

Bowel 
0.65 (Men et al 2017) 

0.88 (Gonzalez et al 2021) 

0.90 

Stomach 0.89 (Gibson et al 2018) 0.90 
Heart 0.95 (Chung et al 2021) 0.94 

Salivary 

Glands 

0.81(Park et al 2021) 

0.86 (Hänsch et al 2019) 

0.82 
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Figure 1: Example organ segmentations produced by the multi-organ CNN on a randomly selected patient from 

the test set. The CNN produced all colored organ renderings. A 150 HU isocontour was produced and is shown 

for visualization purposes in grey. 
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Figure 2: Examples of cases with poor performance comparing the manual ground truth contours (left) with the multi-class U-net contours 

(right). (A) The case with the lowest liver DSC performance due to imperfections of the manual contours. (B) A case with poor kidney 

performance due to a large cyst on the left kidney. (C) Poor bowel performance is found in this example case which may be due to the 

abnormal presence of omental/peritoneal fat and the collection of abnormal peritoneal fluids. (D) A case with poor lung segmentation due 

to lung disease. (E) Severe CT artifacts result in the U-net not contouring the bladder, while the manual contourer may have relied on the 

corresponding PET image to identify the bladder in this difficult case.  
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Figure 3: Comparison of performance of the multi-class versus the single-class organ segmentation models in the held-out test dataset of 42 

images. Displayed performance metrics are A) Dice Similarity Coefficient (DSC) and B) Average Symmetric Surface Distance (ASSD). 

Significant differences between DSC values are indicated by ** for p<0.001, and * for p<0.05. 
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Figure 4: Comparison of manual ground truth contours (left) to both the multi-class CNN (outline) and the single-class CNN (filled in 

colors) for three slices in the abdomen of a single test patient. Areas of errors are often found along the border of two structures (e.g. liver 

and stomach). The multi-class CNN had substantially better segmentation of the adrenal glands for this case (DSC=0.09 for single-class 

model, DSC = 0.66 for multi-class model). 
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Figure 5: Comparison of manufacturer-specific versus manufacturer-mixed organ segmentation models in the (A) 219 images acquired on 

GE scanners and (B) 186 images acquired on Siemens scanners. The performance metric displayed is the Dice Similarity Coefficient 

(DSC). Significant differences between DSC values are indicated by ** for p<0.001, and * for p<0.05. 
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