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Breast cancer remains a significant health concern, accounting 
for nearly one-third of new cancer diagnoses in the United 

States as of 2023 (1). Although breast cancers exhibit hetero-
geneous receptor profiles, around seven in 10 express the es-
trogen receptor (ER) (2). In these tumors, ER signaling plays a 
key role in cell proliferation. Therefore, ER-targeting therapies 
are widely used as first-line treatment (3), and understanding 
the receptor status can help determine the best therapeutic ap-
proach. Typically, ER status is determined through the biopsy 
of a single lesion, chosen based on size, location, and accessibil-
ity. However, biopsies are subject to sampling error, and discor-
dance in ER status between the primary and metastatic lesions 
has been observed in 6%–41% of patients (4). Additionally, the 
ER status within a single lesion may change over the course of 
disease progression (5,6). Therefore, the ER status of a single 
biopsied lesion at a single time point may not be representative 
of the ER status of all lesions over the course of the patient’s 
disease. Recent research suggests that immunohistochemistry 
assays to assess ER status identify the presence, not the activi-
ty, of ERs (7,8). Therefore, although a patient may present as 
ER-positive based on histology, the ERs may not be functional 
and may not respond to hormone-directed therapy (9).

Current standard-of-care imaging for patients with met-
astatic breast cancer includes follow-up CT imaging, using 
Response Evaluation Criteria in Solid Tumors to measure tu-
mor response to therapy (10). In metastatic cases, fluorine 18 
(18F) fluorodeoxyglucose (FDG) PET/CT imaging, highlight-
ing regions of high metabolic activity, provides an important 
additional means of imaging patients to determine prognosis 
as well as measure treatment response (11). However, CT and 
18F-FDG PET/CT each have limitations. In CT images, lesions 
in bone, a common metastatic site for metastatic breast cancer, 
are often not visible. Whereas with 18F-FDG PET/CT, physio-
logic uptake in the brain and other organs may obscure lesion 
detection locally. Additionally, breast cancers with invasive lob-
ular carcinoma histology have low metabolic activity and may 
not be apparent on 18F-FDG PET/CT images (12,13). Finally, 
neither of these imaging methods reflects the current ER status 
of the lesions.

18F-fluorestradiol (FES) is a PET radiotracer that binds to 
ERs that are functional for estrogen binding, allowing for the 
detection of ER-positive lesions (14). The National Compre-
hensive Cancer Network guidelines recommend the use of 
18F-FES PET/CT in certain cases during the systemic staging 
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workup for patients with recurrent or metastatic breast cancer 
(14). Specifically, they state that 18F-FES PET/CT can be used 
to determine the overall ER status of a patient with metastatic 
breast cancer (15), which can be useful when lesions are difficult 
to biopsy or biopsy results are inconclusive (16). They state that 
18F-FES PET/CT can confirm lesions that are equivocal with 
other standard-of-care imaging modalities (16).

One challenge for advanced imaging techniques is the time 
needed to fully identify and quantify lesions for subsequent 
interpretation. Manually identifying lesions on PET images 
can take 5–60 minutes per case, depending on the disease bur-
den (17). Therefore, an automated lesion detection method 
could lead to substantial time savings and aid interpretation of 
18F-FES PET scans.

Automated lesion detection can be challenging due to the 
heterogeneity of PET uptake across patients, healthy tissues, and 
scanner capabilities. For example, newer PET scanner models 
may have better resolution, especially for small lesions, compared 
with older scanner models. Significant work has been done in 
developing automated lesion detection on 18F-FDG PET/CT 
images in various cancer types including breast cancer. The ma-
jority of these methods use a U-Net architecture with a Dice loss, 
which has shown promising results (18–20). However, many pre-
vious methods emphasize whole-body disease burden voxel-level 
segmentation and quantification rather than individual lesion 
detection methods, which penalize region of interest (ROI)–level 
false positives and false negatives (21,22). Examples of deep learn-
ing architectures that emphasize lesion detection include Mask 
R-CNN (23), Retina Net (24), and Retina U-Net (25). The Ret-
ina U-Net architecture balances both the Dice segmentation loss 

and individual lesion detection and has shown promising results 
in PET/CT lesion detection (26–28).

This work presents two automated tools for assessing 18F-FES 
PET/CT images and explores their utility for the clinical work-
flow. Specifically, a lesion detection algorithm was trained and 
assessed for its ability to provide automatic detection of FES-avid 
lesions, thereby assisting in determining whether a patient is suit-
able for endocrine therapy. Additionally, an automated tool us-
ing rule-based methods was used to assess concordance between 
lesions identified by a nuclear medicine physician on 18F-FES 
PET/CT scans and those identified on either diagnostic CT or 
18F-FDG PET/CT scans. We aimed to demonstrate the feasibility 
of automated tools in augmenting visual reads of 18F-FES PET/
CT scans. The downstream aim is to provide a tool that incor-
porates the two algorithms, automated lesion detection and con-
cordance analysis, in a single end-to-end solution in which the 
lesions automatically detected from the 18F-FES PET/CT images 
are fed directly into the concordance analysis tool. However, this 
initial work presents results from the two tools separately and rep-
resents a proof of concept of each step.

Materials and Methods

Study Design and Participants 
This secondary analysis included 52 participants with breast 
cancer who underwent 18F-FES PET/CT at Hoag Memorial 
Hospital Presbyterian as part of a prospective trial comparing 
18F-FES PET/CT to standard-of-care 18F-FDG PET/CT or CT 
imaging for detecting breast cancer metastasis and recurrence 
(ClinicalTrials.gov identifier: NCT04883814 [29]). The study 
was performed after approval by the Western Institutional Re-
view Board Copernicus Group and adheres to the Standards for 
Reporting of Diagnostic Accuracy guideline. GE HealthCare 
provided financial support as an investigator sponsored trial. 
For the current work, authors affiliated with GE HealthCare 
(R.M., M.B., K.W.) did not control data inclusion or exclusion.

Female patients aged 18 years or older with ER-positive 
breast cancer confirmed with immunohistochemistry were eligi-
ble for inclusion after providing written informed consent. Par-
ticipants who were pregnant or lactating, unwilling to provide 
written informed consent, male patients, or patients currently 
using tamoxifen or fulvestrant were excluded from the study. 
Full study details including a flowchart of participant inclusion 
and exclusion criteria can be found in the study by Ulaner et 
al (29). Thirty-six of the 52 participants underwent diagnostic 
CT as well as 18F-FES PET/CT; 14 underwent 18F-FDG PET/
CT and 18F-FES PET/CT; and one underwent all three im-
aging modalities (standard-of-care CT, 18F-FES PET/CT, and 
18F-FDG PET/CT).

Participants were part of one of two study arms. The first 
arm included participants with newly diagnosed breast cancer 
at stage 2 or 3 who were undergoing imaging to investigate sus-
pected distant metastases. The second arm included participants 
who were undergoing imaging to detect suspected recurrence. 
Therefore, due to the nature of the inclusion criteria, none of 
the participants in the first arm had undergone any prior treat-
ment, whereas all participants in the second arm had undergone 
at least one prior round of treatment.

Abbreviations
AI = artificial intelligence, ER = estrogen receptor, FDG = fluorode-
oxyglucose, FES = fluoroestradiol, ROI = region of interest, SUV = 
standardized uptake value, SUVmax = maximum SUV 

Summary
An artificial intelligence model was trained to detect lesions on fluo-
rine 18 (18F)-fluoroestradiol (FES) PET/CT images and an automated 
concordance tool measured heterogeneity between 18F-FES PET/CT 
and standard-of-care imaging.

Key Points
	■ An artificial intelligence (AI) model for lesion detection on 18 flu-

orine (18F) fluoroestradiol (FES) images had a median sensitivity of 
62% for overall lesion detection, with a higher median sensitivity 
(90%) achieved for high-uptake lesions (maximum standardized 
uptake value [SUV] > 1.5, P = .002).

	■ AI lesion detection plus an SUV threshold were combined to 
demonstrate a method for identifying patients with FES-avid me-
tastases, who may be eligible for endocrine therapy.

	■ Automated concordance analysis of lesions manually labeled on 
18F-FES PET/CT, 18F-fluorodeoxyglucose PET/CT, and diagnostic 
CT images in 25 participants revealed that 17 participants (68%) 
had over half the lesions detected across all three modalities present 
on 18F-FES PET/CT images.
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Computer Applications-General (Informatics), Segmentation, 18F-FES 
PET, Metastatic Breast Cancer, Lesion Detection, Artificial Intelli-
gence, Lesion Matching
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Imaging Protocol
Participants underwent 18F-FES PET/CT imaging within 14 
days of the standard-of-care imaging (CT or 18F-FDG PET/
CT). Approximately 5 miCi of FES was administered intra-
venously before PET/CT imaging. Standard-of-care CT and 
18F-FDG PET/CT were performed according to standard clin-
ical protocol.

Lesion Labeling
Lesions were manually contoured on the 18F-FES PET/CT im-
ages by an experienced nuclear medicine physician (S.C., with 
13 years of experience) using both the 18F-FES PET image and 
the associated CT image acquired on the dedicated PET/CT 
scanner for PET attenuation correction. Lesions were identified 
based on the following abnormal patterns: (a) regions with high 
uptake on 18F-FES PET images and abnormal patterns on at-
tenuation CT images, (b) regions with high uptake on the PET 
images that had normal appearance on the attenuation CT im-
ages, and (c) regions that had abnormal appearance on the atten-
uation CT images with no FES avidity. For this investigation, 
lesions in all classes were treated as confirmed malignancies.

Additionally, lesions were manually contoured on the stan-
dard-of-care CT and/or 18F-FDG PET/CT images by the same 
nuclear medicine physician for a subset of 25 participants to 
assess concordance between 18F-FES PET/CT and standard-of-
care images. The subset of participants was randomly chosen 
from participants having disease on one or both imaging mo-
dalities. A total of 13 CT images and 13 18F-FDG PET/CT im-
ages were contoured, with one participant having undergone all 
three imaging methods (18F-FES PET, 18F-FDG PET, and CT).

To assess interreader variability of 18F-FES PET/CT con-
touring and establish a benchmark for automated lesion detec-
tion methods, the 18F-FES PET/CT images were contoured by 
a second reader (Laurence Vass, with 12 years of experience in 
nuclear medicine contouring). 

Automated Lesion Detection
A deep learning model with a Retina U-Net architecture (25) 
was trained for lesion detection using fivefold cross-validation 
with the 52 18F-FES PET/CT examinations. Thus, five models 
were trained in total with 41 or 42 examinations in the develop-
ment set, and 10 or 11 examinations in the testing set, with all 
participant images included in the testing set exactly once. Due 
to the limited number of examinations in the development set, 
a small number of examinations (two) was chosen for monitor-
ing and learning rate scheduling. The remainder of the exam-
inations were used for training.

The Retina U-Net architecture and training regimen was im-
plemented because it combines loss from both a segmentation 
arm and a lesion detection arm, thus weighting more equally the 
loss of small lesions compared with segmentation-only networks 
such as the U-Net. Retina U-Net was implemented as in Jaeger 
et al (25) with the following configuration changes: Two input 
channels were used, one for the 18F-FES PET and one for the 
attenuation correction CT image, which where both were res-
ampled to the same grid size of 2.0 × 2.0 × 2.0 mm, chosen to 
balance the low resolution of the PET image and the high reso-
lution of the CT image. Patches of size 128 × 128 × 128 were 

extracted from the training examinations using class balancing 
to ensure at least 20% of the sampled patches contained a lesion 
that was extracted from the PET/CT examinations on the fly. 
Data augmentations of random rotations and scaling were ap-
plied during training. A batch size of two was used for training, 
which was performed from scratch after random initialization for 
250 epochs, with an epoch being defined as 1200 train batches. 
The loss was optimized using an Adam optimizer with dynamic 
learning rate scheduling, decreasing the learning rate by a factor 
of one-fourth upon plateau of the average precision. The model 
weights from the five epochs with the highest average precision in 
the monitoring dataset were used for inference, taking the average 
of the probabilities of each. The final output was converted to a 
binary mask using the .5 probability cutoff point. 

Model performance was characterized using the free-response 
receiver operating characteristic paradigm, where performance 
is described by the sensitivity (the proportion of physician-iden-
tified ROIs also detected by the convolutional neural network 
[CNN]) and by the number of false positives per image (the 
number of ROIs detected by the CNN that were not identified 
by the physician). This approach is consistent with assessments 
of automated CNN lesion detection, where a concept of a “true 
negative lesion” does not exist and voxel-level specificity is not 
appropriate because the majority of voxels within the image are 
true negatives (21). Any predicted ROI within 10 mm of a ref-
erence standard lesion was classified as a true positive, and any 
two false positives within 10 mm of one another were counted 
as a single false positive. Note that, due to the low resolution of 
PET imaging, this buffer is approximately 2 voxels.

Automated Identification of FES-avid Metastases
The presence of FES-avid metastases in participants was auto-
matically determined using the AI-labeled lesions in the 18F-FES 
PET/CT images and the maximum SUV (SUVmax) thresholds 
described in the study by van Geel et al (15). In brief, participants 
having at least one AI-labeled lesion with an SUVmax greater than 
2.5 were labeled as having FES-avid metastases; participants hav-
ing at least one lesion with an SUVmax between 1.5 and 2.5 were 
labeled as “likely FES-avid metastases”; and participants with no 
lesions having an SUVmax above 1.5 were labeled as having no 
FES-avid metastases. This was also completed using the manually 
drawn contours from the nuclear medicine physician.

Automated Concordance Analysis
Images were analyzed using TRAQinform IQ software (AIQ 
Solutions) to automatically quantify physician-delineated le-
sion ROIs on the 18F-FES PET/CT, 18F-FDG PET/CT, and 
standard-of-care diagnostic CT scans and to match ROIs be-
tween different modalities (17,30). TRAQinform IQ classifies 
each lesion based on its presence at either or both examinations: 
18F-FES PET/CT only, standard-of-care only (18F-FDG PET/
CT or diagnostic CT), or both 18F-FES PET/CT and standard-
of-care examination. TRAQinform IQ is a software medical 
device that performs comprehensive ROI-level estimation of 
anatomic and functional change derived from augmentative 
software analysis of multiple CT or PET/CT scans including 
total and individual changes of tracer uptake, radiodensity vol-
umes, and heterogeneity of change, with interpretation.
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Statistical Analysis
For the lesion detection algorithm, performance was quantified 
overall (across all 52 participants) for all lesions. Additionally, 
performance was assessed in only ROIs with SUVmax greater than 
1.5 and separately with volume larger than 0.5 cm3. Differences 
in sensitivity were assessed using a paired Wilcoxon test with a 
level of P value less than .05 determining significance. Reference 
standard lesions and predicted ROI were classified based on their 
location using TRAQinform IQ’s organ and region segmentation 
tool (AIQ Solutions). The locations extracted for this analysis 
were the entire skeleton and the chest region (includes breast). 

For the concordance analysis, the number and percentage of le-
sions in each category were quantified for each patient. This was 
completed for a subset of 25 participants: 13 18F-FES to 18F-FDG 
comparisons and 13 18F-FES to diagnostic CT comparisons, with 
one patient included in both comparisons as they underwent all 
three imaging acquisitions. Statistical analysis was performed us-
ing Python version 3.9 and R version 4.4.0.

Results

Participant Characteristics
A summary of patient information, including the type of imaging 
performed, subtype, primary tumor grade, hormone receptor sta-
tus from histology, and cancer stage, is shown in Table 1. Number 
of patients excluded, mean ages of the patients, and further study 
details can be found in the study by Ulaner et al (29).

Automated Lesion Detection and Quantification
Across the 52 participants, the algorithm detected a total of 752 
lesions on the 18F-FES PET scans (median per patient: four; 
range, 0–189). Of these, 502 of 752 (66.8%) had an SUVmax 
greater than 1.5 g/mL (two; range, 0–188), and 443 of 752 
(58.9%) had volume greater than 0.5 cm3 (three; range, 0–138).

Figure 1 illustrates six example 18F-FES PET/CT images 
with the automated detection results showing cases with above 
or at the median accuracy of the model in the top row, and the 
bottom row highlights cases that were less accurate (low sensi-
tivity or a large number of false-positive regions). Additionally, 
Figure 1 (1F1, 1F2) illustrates, in one patient, the accuracy of 
the model to detect lesions with either low uptake (Fig 1F1) 
or small volumes (Fig 1F2). It can be noticed that the model 
primarily detected larger lesions (volume > 0.5 cm3) and those 
with higher uptake (SUVmax > 1.5).

Figure 2 shows quantified sensitivity and false positives 
across all 52 participants and characterizes the performance by 
SUVmax and volume of the regions. A table listing the model 
performance for each individual patient can be found in Table 
S1. The median performance in all lesions was 62% sensitivity 
with 0 false positives per patient. The AI model demonstrated 
higher sensitivity (median of 90%) in detection of high-uptake 
lesions (SUVmax > 1.5, P = .002) compared with overall lesion 
detection. However, there was no evidence of a difference in 
sensitivity for detection of large lesions (volume > 0.5 cm3, me-
dian sensitivity of 80%, P = .15) compared with overall lesions. 
Table 2 illustrates the accuracy of the model for the whole body, 
chest soft tissues only, and skeleton only, with IQRs. The sensi-
tivity was highest for lesions in the chest only (including breast 
lesions) and lowest for lesions in the skeleton.

Across the 52 participants, the second FES reader (Laurence 
Vass) contoured a total of 442 (median per patient: one; range, 
0–195) lesions. Of these, 434 of 442 (98%) had SUVmax greater 
than 1.5 g/mL (one; range, 0–192), and 376 of 442 (85%) had 
volume greater than 0.5 cm3 (one; range, 0–166). When com-
paring this reader to the original FES reader (S.C.), the second 
reader had a median sensitivity of 42% with 0 false positives per 
patient. In lesions with SUVmax greater than 1.5, the median 
sensitivity of the second reader (Laurence Vass) was 76% with 0 
false positives per patient, and in lesions with a volume greater 

Table 1: Participant Characteristics 

Characteristic No. of Participants (n = 52)

Imaging

  18F-FES PET/CT 52 (100)

  CT 37 (71)

  18F-FDG PET/CT 15 (29)

Subtype

  ILC 9 (17)

  NOS (IDC) 43 (83)

Primary tumor grade

  1 4 (8)

  2 31 (60)

  3 10 (19)

  NA 7 (13)

ER status

  Positive 52 (100)

  Negative 0 (0)

PR status

  Positive 48 (92)

  Negative 4 (8)

HER2 status

  Positive 4 (8)

  Negative 48 (92)

Study arm

  1: unsuspected distant metastases
    (no prior treatment)

26 (50)

  2: suspected recurrence
    (received prior treatment[s])

26 (50)

Stage

  2B (study arm 1) 17 (33)

  3A (study arm 1) 9 (17)

  4 (study arm 2) 26 (50)

Note.—Data are numbers of participants, with percentages in 
parentheses. ER = estrogen receptor, 18F = fluorine 18, FDG 
= fluorodeoxyglucose, FES = fluoroestradiol, HER2 = human 
epidermal growth factor 2, IDC = invasive ductal carcinoma, ILC 
= invasive lobular carcinoma, NA = not available, NOS = not 
otherwise specified, PR = progesterone receptor.
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Figure 1:  Example scans in women with breast cancer of automated lesion identification from fluorine 18 (18F)-fluoroestradiol (FES) PET/CT 
highlighting true positives (green), false positives (red), and false negatives (blue). (A) All four lesions labeled in the reference standard annotation 
were detected by the model (100% sensitivity). (B) Thirty-three of the 46 lesions were detected by the model (72% sensitivity), whereas 13 lesions 
were not (false negatives). Additionally, three regions were labeled by the model that were not labeled by the expert reader (false positives). These 
false positives were located in the peripheral vein where the tracer was injected. (C) The model detected 46 of 72 lesions (63% sensitivity) but found 
two additional regions (false positives). (D) One case with relatively high sensitivity (finding 167 of 189 lesions, 88%) yet with eight false positives. 
Most missed lesions from this case were in the head and upper extremities. The false positives were in the right and left femur and could indicate le-
sions missed by the human reader. (E) The case shows numerous false positives in the peripheral vein where the tracer was injected. At the same time, 
the model failed to detect all lesions in the chest. (F) The model only detected 10 of 29 total lesions (34% sensitivity) labeled in the reference stan-
dard. The same participant is shown in panel F, highlighting lesions that had (F1) low tracer uptake (maximum standardized uptake value [SUVmax] < 
1.5) and (F2) small lesions (volume < 0.5 cm3). 

http://radiology-ic.rsna.org
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than 0.5 cm3, the median sensitivity of the second reader (Lau-
rence Vass) was 67% with 0 false positives per patient.

Automated Identification of FES-avid Metastases
Table 3 illustrates which participants, at the time of imaging, 
have no FES-avid metastases, likely have FES-avid metastases, 
or have FES-avid metastases, using AI and manually labeled le-
sions and SUV thresholds defined in the study by van Geel et al 
(15). Of the 11 participants labeled as having no FES-avid me-
tastases using manually labeled lesions, 10 underwent resection 
of the primary tumor (either lumpectomy or full mastectomy) 
before 18F-FES PET/CT imaging. Similarly, nine of 10 partici-
pants labeled as having no FES-avid metastases from the AI-la-
beled lesions underwent resection of the primary tumor before 
imaging. In these two cases that did not include resection of 
the primary tumor, the primary lesion had responded to other 
therapy and was not apparent at 18F-FES PET (SUVmax < 1.5) at 
the time of imaging.

The AI tool for detecting lesions, when used in conjunction 
with the thresholds defined in the study by van Geel et al (15), 
was shown to have a sensitivity of 90% (37 of 41, 95% CI: 
76, 97) to detect which participants had FES-avid metastases 
(including FES-avid metastases and likely FES-avid metasta-
ses), and required no manual input. However, the automated 
tool erroneously labeled four participants as not having FES-
avid metastases when the automated tool failed to detect lesions 

(three of four had low uptake: SUVmax < 2.5). Likewise, due to 
the presence of false positive lesions in some participants, five 
participants were falsely labeled as having FES-avid metastases, 
leading to an overall specificity of 55% (six of 11, 95% CI: 25, 
82). See Figure 3 for the full confusion matrix.

Automated Concordance Analysis
Overall findings of the concordance analysis for the subset of 25 
participants for both 18F-FDG PET/CT and standard-of-care 
diagnostic CT are shown in Figure 4. Disease heterogeneity, 
defined as having at least one lesion that appeared in one but 
not both modalities, was present in 12 of 13 cases comparing 
18F-FES PET/CT with 18F-FDG PET/CT and in 11 of 13 cases 
comparing 18F-FES PET/CT with diagnostic CT. Across all an-
alyzed participants, only one of 25 (4%) had no lesions detected 
with 18F-FES PET/CT. In 17 of 25 participants (68%), over half 
of the detected lesions were present at 18F-FES PET/CT. Sim-
ilarly, in 18 of 25 participants (72%), over half of the detected 
lesions were present on standard-of-care images (18F-FDG PET/
CT or diagnostic CT). Six of 25 participants (24%) had the 
majority of their lesions detected with 18F-FES PET/CT only. 
Four participants chosen randomly for the concordance analysis 
had invasive lobular carcinoma (Fig 4). Three of these four par-
ticipants showed a large proportion of lesions (>70%) only de-
tected at 18F-FES PET/CT. Figures 5 and 6 show concordance 
maps for individual participants comparing 18F-FDG PET/CT 

Figure 2:  Accuracy of the automated lesion detection algorithm. A three-dimensional bar plot is shown to demonstrate that the model had the same performance in multi-
ple patients. When including all lesions in the results, the median performance was 62% sensitivity with 0 false positives per patient, and the algorithm had perfect performance 
(100% sensitivity and no false positives) in 10 of 52 participants. However, if only lesions with high uptake (maximum standardized uptake value [SUVmax] > 1.5) were in-
cluded, the median performance was 90% sensitivity with 0 false positives per patient, and the model performed perfectly in 16 of 52 participants. Finally, if small lesions were 
removed from the analysis (with a volume < 0.5 cm3), the median performance was 80% sensitivity with 0 false positives per patient, and the algorithm performed perfectly in 
16 of 52 participants. 

Table 2: Lesion Detection Accuracy of the Artificial Intelligence Model for the Whole Body, Chest 
Region Only, and Skeleton Only

Region
No. of Participants 
with Lesions Total No. of Lesions Sensitivity (%)

False Positives per 
Participant

Whole body 51 752 62 (25, 100) 0 (0, 1)

Chest soft tissues 49 236 86 (50, 100) 0 (0, 0)

Skeleton 15 433 45 (0, 81) 0 (0,0)

Note.—Data for sensitivity and false positives per participants are shown as medians, with lower quartiles and 
upper quartiles in parentheses.
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to 18F-FES PET/CT (Fig 5) and a diagnostic CT to 18F-FES 
PET/CT (Fig 6). In particular, Figure 5 highlights one partici-
pant with invasive lobular carcinoma in which only two lesions 
were FDG-avid, whereas 46 lesions were FES-avid.

Discussion
This study presented two automated image analysis tools and 
their applications and clinical use cases for managing patients 
with metastatic breast cancer using 18F-FES PET/CT imaging. 
First, exploratory results in a small dataset showed a lesion de-
tection algorithm was able to achieve excellent performance in 
detecting FES-avid likely malignant lesions, with a median sen-
sitivity of 90% in lesions with an SUVmax greater than 1.5. Sec-
ond, an automated concordance analysis of reference standard 
lesions on 18F-FES PET/CT and standard-of-care images was 
performed, highlighting the anatomic and functional and mo-
lecular heterogeneity of metastatic breast cancer across lesions 
and participants with 12 of 13 cases displaying evidence of dis-
ease heterogeneity. This automated approach, when expanded 
and validated in larger datasets, has the potential to assess the 
presence of functional ERs within all lesions in a patient, which 
is currently infeasible manually due to the potentially high 
numbers of lesions that can be present in metastatic patients.

To the authors’ knowledge, this article 
presents the first AI model for lesion detec-
tion in 18F-FES PET/CT images. Although 
there are several previous studies applying 
AI methods for automated lesion detection 
in 18F-FDG PET/CT scans of patients with 
metastatic breast cancer, often research lim-
its the scope of lesion detection, for example, 
only aiming to detect bone lesions (31) or le-
sions well above the PET background (18). 
In Moreau et al (19), an nnU-Net model was 
trained with 60 18F-FDG PET/CT images to 
detect metastatic breast cancer lesions. The 

study presents an average lesion detection sensitivity of 72% 
with baseline images and 43% with follow-up images, though 
there is no description of whether the manual reference stan-
dard segmentations included low-uptake PET lesions or if the 
sensitivity was higher in lesions above a given SUVmax cutoff. 
This performance is similar to the detection sensitivity reported 
in the current study (median of 62%), and the Retina U-Net 
method achieved a median sensitivity of 90% in lesions with 
an SUVmax greater than 1.5 g/mL. Because 502 of 752 (67%) 
and 443 of 752 (59%) of the lesions manually segmented had 
an SUVmax greater than 1.5 g/mL or a volume greater than 0.5 
cm3, respectively, the reduced sensitivity of detecting low-up-
take small lesions may be attributed to data imbalance, wider 
heterogeneity in the appearance of these lesions, or more subtle 
imaging abnormalities compared with high-uptake larger le-
sions. For example, low-uptake lesions may be more difficult 
for the model to learn to detect due to having an abnormal 
pattern on the CT image but a normal pattern on the 18F-FES 
PET image. Lesion detection sensitivity was higher in the chest 
soft tissue region compared with the skeleton, although sam-
ple size limitations prevent statistical testing. In fact, 49 of 52 
(94%) participants had lesions in the chest, whereas only 15 of 
52 (29%) participants had lesions in the skeleton. Model sensi-
tivity for detecting small or low-uptake lesions may be improved 
with a larger training dataset combined with class balancing 
techniques. Furthermore, a larger training dataset may reduce 
the number of false positives related to phenomena common to 
many images, such as uptake at the injection site.

The automated concordance analysis, which was applied to 
the reference standard lesion contours for all image modalities, 
illustrates the utility of 18F-FES PET/CT in several clinical ap-
plications for patients with metastatic breast cancer. First, results 
showed that six of the subset of participants had the majority of 
lesions detected only at 18F-FES PET/CT. In these participants, 
and in others with lesions detected only at 18F-FES PET/CT, a 
change in patient management may be appropriate due to this 
finding. It is common to find equivocal lesions with standard-
of-care imaging modalities such as diagnostic CT and 18F-FDG 
PET/CT due to their high sensitivity and low specificity. More 
specifically, in patients with invasive lobular carcinoma, tumors 
often have low metabolic activity and therefore do not have 
high uptake on 18F-FDG PET/CT scans (12,32). Therefore, 
any ER-positive lesions will be detected at 18F-FES PET/CT ex-
aminations but not at 18F-FDG PET/CT for this patient group. 
Although lesions may be visible in the attenuation correction 

Table 3: Comparison of Labels for Presence of FES-avid Metastases between 
Manual Physician and Automated Lesion Contours

Metastases

No. of Patients with FES-avid Metastases

Manually Labeled Lesions  AI-Labeled Lesions

No FES-avid metastases 11 10

Likely FES-avid metastases 13 9

FES-avid metastases 28 33

Note.—AI = artificial intelligence, FES = fluoroestradiol.

Figure 3:  Confusion matrix illustrates accuracy of the AI method for la-
beling patients as either having (or likely having) breast cancer metastases 
or not having metastases. Met = metastases.
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portion of the PET/CT, this was not used in the concordance 
analysis because the quality of the attenuation CT varies greatly 
depending on the acquisition protocol and parameters. There-
fore, when performing the concordance analysis comparing 
18F-FES to CT, only the diagnostic CT was used, despite having 
a smaller field of view than that of PET/CT.

Interreader variability of 18F-FES PET/CT was poor in this 
patient population; however, this is largely due to the second 
reader contouring predominantly high uptake (SUVmax > 1.5) 
lesions. In fact, 502 of 752 (67%) of lesions contoured by the 
first reader (S.C.) had an SUVmax greater than 1.5, whereas 434 
of 442 (98%) of the lesions contoured by the second reader 
(Laurence Vass) had an SUVmax greater 1.5. This can likely be 
explained by the differences in experience between the two 
readers, with the first reader being trained as a general nuclear 
medicine physician and contouring abnormal attenuation cor-
rection CT findings. On the other hand, the second reader was 
specifically trained for 18F-FES PET contouring and therefore 
focused only on contouring high FES uptake lesions. This 
discrepancy highlights the difficulty of generating a reference 
standard dataset for PET imaging, because it is unclear whether 
models should be trained to detect abnormalities on CT images 
or only disease with high radiotracer avidity. Practically, the ap-
proach will depend on the desired application: if an estimate 
of radiotracer avidity is needed, low-uptake lesions can be left 

out of the reference standard dataset. Conversely, if it is desired 
to detect all abnormalities for an application such as comput-
er-aided detection in generating patient reports, FES-negative 
disease may be included.

In the decision tree for determining whether a patient has 
FES-avid metastases, a patient was labeled as having (or likely 
having) FES-avid metastases if one (or more) lesions had an SU-
Vmax greater than 1.5 (15). In participants with more than one 
lesion, the accuracy of this patient-level label is less dependent 
on accurately detecting a single lesion and can rely on simply 
finding any lesion. However, in 20 of the 52 participants, the 
automated status (of having FES-avid metastases or not) was 
determined by a single lesion (or absence of any lesion in the 
case of some participants). Therefore, the tool proved to be pro-
ficient (with a sensitivity of 90%) in automating the determina-
tion of whether participants had or did not have FES-avid me-
tastases in participants with both high and low disease burdens. 
However, the high rate of false positives led to a low specificity 
(54.5%), which could be improved with a larger training set, 
enabling the model to better learn differences between healthy 
and pathologic tracer uptake.

There is a growing amount of literature investigating the 
impact of interlesion heterogeneity on therapy response and 
patient outcomes, showing that patients with FES-negative le-
sions show poorer response to endocrine therapy (33–35). One 

Figure 4:  Overall results of the automated concordance analysis, showing the number (top row) and percentage (bottom row) of lesions man-
ually detected by a nuclear medicine physician with each imaging modality. Results comparing fluorine 18 (18F)-fluoroestradiol (FES) PET/CT to 
18F-fluorodeoxyglucose (FDG) PET/CT are shown in the left two plots, and results comparing 18F-FES PET/CT to standard-of-care CT are shown in 
the right two. Participants with invasive lobular carcinoma are indicated by bolding and an asterisk.
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recent study (35) demonstrated the importance of measuring 
full-body heterogeneity for the prediction of response to endo-
crine therapy. However, depending on the disease burden, la-
beling all lesions from a PET/CT scan can take 50–60 minutes 
per case (17), which is infeasible in a clinical setting. The study 
by van Geel et al (35) showed that faster short-cut methods, 
such as a visual heterogeneity assessment and a “five largest le-
sion” method were not sufficient for prediction of response and 

that full-body lesion detection and concordance with 18F-FDG 
PET/CT were needed. Both tools presented in this study, for 
automated lesion detection and concordance analysis, are in-
tended to facilitate full-body concordance analysis so that it can 
become clinically feasible. The automated lesion detection algo-
rithm presented here takes between 1 and 3 minutes to run on a 
standard workstation, depending on the size of the field of view. 
Therefore, even with a review and confirmation of detected 

Figure 5:  In one selected participant with invasive lobular carcinoma, the automated concordance tool (center) highlights two 
lesions (green), which were found in both the (left) fluorine 18 (18F)-fluorodeoxyglucose (FDG) PET/CT and (right) 18F-fluoroestradiol 
(FES) PET/CT images, whereas 44 lesions (light blue) were identified in only the 18F-FES PET/CT image and none were found in only the 
18F-FDG PET/CT image. 

Figure 6:  In one selected participant, the automated concordance tool (center) highlights 24 lesions (dark blue) that were found in both 
the standard-of-care CT image (left) and fluorine 18 (18F)-fluorodeoxyglucose (FES) PET/CT image (right); 128 lesions (light blue) were 
identified with only the 18F-FES PET/CT, and two lesions were found with only the standard-of-care CT. Seven lesions were outside of the CT 
field of view (gray).
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lesions, this tool has the ability to present significant time sav-
ings when doing a full-body heterogeneity assessment.

One pitfall of 18F-FES PET imaging is that any FES-avid 
liver metastases will be masked by the high physiologic uptake 
in the liver. For the lesion detection model, the accuracy of the 
model was calculated based on the reference standard read on 
the 18F-FES PET images. Therefore, no liver lesions were identi-
fied by the reader manually because liver lesions would also not 
be visible to the human eye. In the subset of images randomly 
chosen for the concordance analysis, only one patient had a le-
sion found on the standard-of-care images (18F-FDG PET/CT). 
This lesion was, as predicted, not identified at the 18F-FES PET/
CT examination. 

This study had numerous limitations. Due to limited data-
set size as well as a lack of further imaging and follow-up, 
reasons for discordance presented in this study could not be 
further analyzed. Another limitation of the study was that, in 
this proof-of-concept work, the concordance analysis was per-
formed using manually contoured lesions from each modal-
ity. The concordance analysis performed in this study is only 
achievable through automation; manual detection, segmenta-
tion, and matching of all lesions across modalities is infeasible 
in a clinical setting (35,36). The matching method used in this 
work has been shown to have performance similar to interphy-
sician variability of the same task (17). A fully automated lesion 
detection algorithm for all modalities preceding an automated 
concordance assessment would provide the most comprehensive 
method for allowing quantification and characterization of all 
lesions in a patient with metastases. Although of interest for 
future work, this approach was not taken in the current study. 
In a clinical workflow, a fully automated approach may have 
important implications for assisting treatment decisions of both 
systemic and targeted therapies.

Other limitations that are important to note include that 
results from the automated lesion detection approach are ex-
ploratory and, although we performed cross-validation as a step 
toward ensuring model generalizability, our results do not repre-
sent performance in an external validation dataset. Further work 
is needed to gather larger datasets, determine optimal network 
architecture, and validate the tool across imaging centers. With 
larger datasets, free response operator curves could also be gener-
ated to adjust the operating point for higher sensitivity and lower 
specificity. This was not performed in the current study because 
the tuning dataset for each fold of cross-validation (two scans) 
was too small to determine an optimal point for application to 
the held-out data. Additionally, reference standard contours gath-
ered from a consensus of experienced nuclear medicine physicians 
could improve the consistency of the training and testing data. 
This is apparent in an example 18F-FES PET/CT image that had 
189 reference standard lesions, in which eight false positives were 
detected by the model. Of these eight false positives, five were lo-
cated in the legs in high-uptake regions that could potentially be 
true positives missed by the physician due to contouring fatigue 
resulting from contouring disease in patients with such a high dis-
ease burden. A consensus contour via nuclear medicine physician 
panels would reduce the impact of physician fatigue in these high 
burden cases. Finally, although the Retina U-Net architecture 
was chosen to emphasize both lesion detection and segmenta-
tion during optimization, comparisons with the self-configuring 

nnU-Net (37), which has performed well in medical image seg-
mentation tasks, are warranted as future work. 

In conclusion, this work introduces an AI model that was 
trained to detect lesions on 18F-FES PET/CT images and an au-
tomated concordance tool that measured heterogeneity between 
18F-FES PET/CT and standard-of-care imaging. Using these 
tools, we have demonstrated how an automated tool can be used 
to rapidly detect lesions in patients with metastatic breast cancer 
and determine whether a patient has ER-positive metastases. This 
determination can then be used to decide whether a patient is 
suitable for endocrine therapy. The automated concordance tool 
presented would allow clinicians to rapidly assess interlesion het-
erogeneity for a patient given more than one type of imaging. In 
future work, the plan is to link the two tools presented together 
by feeding the automatically detected lesions from both modali-
ties (18F-FES PET/CT and 18F-FDG PET/CT or diagnostic CT) 
into the concordance tool. Additionally, in future studies, ana-
lyzing discordant results with respect to tumor subtype and prior 
treatments is needed. Further, correlating across multiple stan-
dard-of-care imaging modalities (eg, 18F-FES PET vs both CT 
and 18F-FDG PET) for a larger population should be performed.
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